
Using�the�V-Spark�3.5.0�API

Using the V-Spark 3.5.0 API
© Copyright 2019 Voci All Rights Reserved.

The information contained in this document is the proprietary and confidential information of Voci Technologies, Inc. You may not disclose,
provide or make available this document, or any information contained in this document, to any third party, without the prior written consent
of Voci.

The information in this document is provided for use with V-Spark Voice Analytics. No license, express or implied, to any intellectual property
associated with this document or such products is granted by this document.

All Voci Technologies, Inc. products described in this document, including V-Spark Analytics and others prefaced by Voci are owned by Voci (or
those companies that have licensed technology to Voci) and are protected by patents, trade secrets, copyrights or other industrial property rights.
The Voci products described in this document may still be in development. The final form of each product and release date thereof is at the sole and
absolute discretion of Voci. Your purchase, license and/or use of Voci products shall be subject to Voci's then current sales terms and conditions.

Trademarks

The following terms used in this document are trademarks of Voci Technologies, Inc. in the United States and other countries:

• Voci

• V-Blaze

• V-Cloud

• V-Discovery

• V-Ferno

• V-Purify

• V-Spark

Other third party disclaimers or notices may be set forth in Voci's online or printed documentation. All other product and service names, and
trademarks not owned by Voci are the property of their respective owners.

Using�the�V-Spark�3.5.0�API

Using the V-Spark 3.5.0 API Table of Contents

© 2019, Voci Technologies, Inc. Proprietary and Confidential iii

Table�of�Contents
1. V-Spark API Overview .. 1

1.1. Overview of the V-Spark Hierarchy ... 1
1.2. V-Spark API Permission Requirements ... 2
1.3. Using cURL for REST API Testing ... 2

1.3.1. Obtaining and Using the cURL program ... 2
1.3.2. Tips for Debugging and Managing cURL Calls ... 3

1.4. Using Python with REST APIs ... 4
2. Pre-Requisites ... 5
3. Retrieving and Updating V-Spark Information .. 7

3.1. Retrieving and Updating V-Spark Installation Configuration ... 7
3.1.1. Reference for the /config API ... 7

3.1.1.1. Refining by Companies, Organizations, Folders, and Apps 9
3.1.2. Sample JSON Output from the /config API ... 10

3.1.2.1. Sample /config JSON Output for a Company 10
3.1.2.2. Sample /config/orgs JSON Output for an Organization 13
3.1.2.3. Sample /config/folders JSON Output for a Folder 15
3.1.2.4. Sample /config/apps JSON Output for an Application 20
3.1.2.5. Sample /config/users JSON Output for a User 22
3.1.2.6. Sample /config/system/readonly JSON Output for System Status 26

3.2. Permissions and Capabilities in the /config/users API .. 27
3.2.1. V-Spark Permissions and the /config/users API .. 27
3.2.2. Differences between GET and POST JSON for the /config/users API 29

3.3. Using the /config API with cURL .. 30
3.3.1. GET'ing Information Using cURL and the /config API 30
3.3.2. POST'ing Information Using cURL and the /config API 32
3.3.3. DELETE'ing Information Using cURL and the /config API 32

3.3.3.1. Getting DELETE Status Information ... 33
3.4. Using the /config API with Python ... 35

3.4.1. GET'ing Information Using Python and the /config API 35
3.4.2. Integrating Multiple GET Results Using Python ... 36
3.4.3. POST'ing Information Using Python and the /config API 38
3.4.4. DELETE'ing Information Using Python and the /config API 40

3.5. Listing Configuration Information .. 41
3.5.1. Reference for the /list API .. 41

3.5.1.1. Sample JSON Output from the /list API ... 42
3.5.1.2. Using the /list API with cURL .. 44
3.5.1.3. Using the /list API with Python .. 45

4. Submitting audio and metadata for processing .. 47
4.1. Reference for the /transcribe API ... 48

4.1.1. Examples of calling the /transcribe API .. 49
4.2. Using the /transcribe API with AWS S3 .. 49

5. Receiving transcripts and status information ... 53
5.1. Using Callbacks in V-Spark .. 53

5.1.1. Configuring Callbacks in V-Spark ... 54
5.1.2. Example Callback Server .. 60

5.1.2.1. Setting up a Sample Callback Server .. 60
5.1.2.2. Submitting a Sample File for Text Transcription 60
5.1.2.3. Receiving Transcription Results ... 60
5.1.2.4. Troubleshooting a Callback Server ... 61

5.2. Reference for the /request API ... 62
5.3. Examples of calling the /request API .. 64

Table of Contents Using the V-Spark 3.5.0 API

iv Proprietary and Confidential © 2019, Voci Technologies, Inc.

6. Retrieving Folder Status Information .. 67
6.1. Reference for the /status API ... 67
6.2. Sample JSON and CSV Output from the /status API ... 68

6.2.1. Sample /status JSON and CSV Output for a Company 68
6.2.2. Sample /status JSON and CSV Output for an Organization 69
6.2.3. Sample /status JSON and CSV Output for a Folder ... 70

6.3. Using the /status API with cURL ... 71
6.4. Using the /status API with Python .. 71

7. Searching V-Spark Data ... 75
7.1. Reference for the /search API .. 75

7.1.1. Output Type Options ... 76
7.1.2. Search Term Options .. 77
7.1.3. Output Format Options .. 79
7.1.4. Output Field Options ... 79
7.1.5. Output Sorting Options .. 81

7.2. Sample JSON Output for a query from the /search API .. 82
7.3. Using the /search API with cURL .. 83
7.4. Using the /search API with Python ... 83

7.4.1. Using the /search API via GET with Python .. 83
7.4.2. Using the /search API via POST with Python .. 85

8. Retrieving Folder and Application Statistics Information .. 89
8.1. Retrieving Folder Statistics ... 89

8.1.1. Reference for the /stats API .. 89
8.1.2. Sample JSON from the /stats API .. 90
8.1.3. Using the /stats API with cURL .. 91
8.1.4. Using the /stats API with Python ... 92

8.2. Retrieving Agent Application Statistics and Category Scores 94
8.2.1. Reference for the /appstats API ... 94
8.2.2. Sample JSON from the /appstats API ... 96
8.2.3. Using the /appstats API with cURL ... 97
8.2.4. Using the /appstats API with Python .. 99

9. Configuring V-Spark Applications .. 101
9.1. Reference for the /appedit API ... 101
9.2. Using the /appedit API with cURL ... 102

9.2.1. Creating and Populating an Application Using cURL 103
9.3. Using the /appedit API with Python .. 105

10. Retrieving System Information ... 107
10.1. Reference for the /sysinfo API ... 107
10.2. Sample JSON from the /sysinfo API ... 107
10.3. Using the /sysinfo API with cURL .. 112

A. Sample transcribe/request API Shell Script .. 113
B. Possible Error Codes from the V-Spark API .. 115

B.1. Possible Error Codes from the /transcribe API .. 115
B.2. Possible Error Codes from the /request API ... 116
B.3. Possible Error Codes from the /config/folders API .. 117
B.4. General Error Codes from the V-Spark APIs ... 117

Using the V-Spark 3.5.0 API List of Figures

© 2019, Voci Technologies, Inc. Proprietary and Confidential v

List�of�Figures
1.1. Location of a Company Authorization Token .. 2
3.1. Sample Company output from the /config API ... 10
3.2. Creating a Company in the V-Spark GUI .. 11
3.3. Sample Company output from the /config/CO_SHORT API ... 12
3.4. Sample Organization output from the /config/orgs API .. 14
3.5. Creating an Organization in the V-Spark GUI .. 14
3.6. Sample Organization output from the /config/CO_SHORT/ORG_SHORT API 15
3.7. Sample Folder output from the /config/folders API ... 16
3.8. Creating a Folder in the V-Spark GUI .. 17
3.9. Sample Folder output from the /config/CO_SHORT/ORG_SHORT/FOLDERNAME API 20
3.10. Sample Application output from the /config/apps API .. 20
3.11. Creating an Application in the V-Spark GUI .. 21
3.12. Sample Application output from the /config/CO_SHORT/ORG_SHORT/apps/APPNAME
API ... 22
3.13. Sample User Information from the /config/users API ... 23
3.14. Registering for a V-Spark Account ... 24
3.15. Sample User output from the /config/CO_SHORT/users API ... 26
3.16. Sample output from the /config/system/readonly API ... 26
3.17. Sample User JSON for a System Administrator .. 27
3.18. Sample User JSON with Company-Level Permissions .. 28
3.19. Sample User JSON with Organization-Level Permissions ... 28
3.20. Sample User JSON Including a Password Field .. 29
3.21. Sample User JSON for use with the /config/users API ... 31
3.22. Sample User JSON for use with the /config/CO_SHORT/users API 31
3.23. Folder Status When No Delete Operation is In Progress ... 34
3.24. Folder Status When a Delete Operation is In Progress .. 34
3.25. Sample Python code to query the /config API ... 36
3.26. Sample Python code to combine data read from the /config API ... 37
3.27. Sample Python code to write (POST) data with the /config API ... 39
3.28. Sample Python code to delete data using the /config API .. 40
3.29. Invoking the code in Figure 3.25 to use the /list API .. 46
4.1. Location of the V-Spark Organization Short Name ... 48
5.1. V-Spark Folder Settings ... 54
5.2. Editing V-Spark Folder Settings .. 55
5.3. Further Customization of V-Spark Folder Settings .. 56
5.4. Specifying custom metadata fields to include in output .. 57
5.5. Specifying ASR options ... 57
5.6. Configuring an HTTP Callback Server and related options .. 58
5.7. Configuring an SFTP Callback Server and related options ... 59
6.1. Previewing /status information in a spreadsheet .. 71
6.2. Sample Python Code to Retrieve /status Information ... 73
7.1. Sample Python Code to search for Audio using GET, Part 1 ... 84
7.2. Sample Python Code to search for Audio using GET, Part 2 ... 85
7.3. Sample Python Code to Search for Audio using POST, Part 1 ... 86
7.4. Sample Python Code to Search for Audio using POST, Part 2 ... 87
8.1. Sample Folder Statistics Output from the /stats API .. 90
8.2. Sample Python Code for Retrieving Folder Statistics from the /stats API 93
8.3. Sample Application Statistics and Category Score Output from the /appstats API 97
9.1. Sample JSON that defines an Application .. 103
9.2. Sample JSON that Associates an Application with a Folder .. 103
9.3. Sample JSON for an Application ... 104

List of Figures Using the V-Spark 3.5.0 API

vi Proprietary and Confidential © 2019, Voci Technologies, Inc.

9.4. Sample Python Application for POST'ing JSON to APIs .. 105
10.1. Sample Basic System Output from the /sysinfo API .. 108

Using the V-Spark 3.5.0 API Chapter 1. V-Spark API Overview

© 2019, Voci Technologies, Inc. Proprietary and Confidential 1

Chapter�1. V-Spark�API�Overview
V-Spark is an all-inclusive speech analysis application that enables you to visualize audio using state-of-
the-art speech recognition, transcription, and text analysis technologies. V-Spark automatically transcribes
audio into searchable text, then organizes and archives the data, and finally provides an intuitive web
interface through which you can examine and explore that data. The information is stored in a database
where the audio can be searched and analyzed for compliance, customer insights, and agent performance.
V-Spark has the most complete set of speech technologies in a single solution on the market today.

This guide explains how to use V-Spark's Representational State Transfer (REST) Application
Programming Interface (API) to:

• automate the upload of audio and optional metadata into V-Spark

• automate the download of fully annotated transcripts out of V-Spark

• examine or modify a V-Spark installation using APIs that enable you to:

• retrieve, update, delete, or list information about companies, organization, folders, and applications

• retrieve information about users

• retrieve status information about companies and folders. This information can be retrieved in JSON
and CSV format.

• search the files in a folder or under an organization to identify and retrieve matching search results.
This information can be retrieved in JSON and CSV format, and as a ZIP-format archive files that
contains the results.

Note that the V-Spark API is identical for both on-premise and cloud-based deployments. The V-Spark
REST API uses the HyperText Transfer Protocol (HTTP) for data transfers. Every Voci solution includes
a REST API to make integration with our products quick and easy in any computer language. A basic level
of programming skill is required to use this API effectively.

1.1. Overview�of�the�V-Spark�Hierarchy
Understanding how to use the V-Spark API requires that you understand how the different components
that make up a V-Spark installation are organized, which can be thought of as the V-Spark hierarchy:

1. company - the highest structural entity within the hierarchy of a V-Spark installation. Multiple
companies can be defined within a V-Spark installation, but only the administrators of that installation
or users with company-level administrative privileges can view and modify the data that is associated
with a company. Each user in a V-Spark installation is associated with a single company.

2. organizations - a logical unit (group) within a company

3. folders - a repository for files and transcriptions that are associated with an organization. Multiple
folders can be associated with a single organization.

4. applications - customized analytics tools that are associated with one or more folders

5. users - individual accounts that are defined within a company and can belong to one or more
organizations

6. system - administrative configuration information that is associated with a single V-Spark installation.

Chapter 1. V-Spark API Overview Using the V-Spark 3.5.0 API

2 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Tip

For information about the users of a V-Spark installation and the roles and permissions that
they have within a V-Spark installation, see the "Companies, Organizations, and Accounts"
and "User Account Types" sections of the "V-Spark 3.5.0 Management Guide".

1.2. V-Spark�API�Permission�Requirements
When calling any V-Spark REST API function, you must provide an authorization token that shows that
you have the right to perform the operation that you are requesting. V-Spark provides two different types
of authorization tokens:

• root token - authorizes you to call any V-Spark API and perform any V-Spark API operation. This
includes API functions that apply to your entire V-Spark installation and span multiple companies, such
as /config, /config/users, /config/orgs, /config/folders, /config/apps, and
/config/system/readonly. The root token also authorizes you to call any company-specific,
organization-specific, folder-specific, or application-specific API function. The root token for a V-Spark
installation is found in the file /opt/voci/state/vspark/apitoken on the system on which
V-Spark is installed. This token is therefore only available to users who can access the machine on
which V-Spark is installed, and who have sufficient privileges to access the V-Spark installation.

• company token - authorizes you to call any V-Spark API within the scope of that company
and perform any V-Spark API operation that is within the scope of that company. This includes
general API calls that require one or more company-related arguments such CO_SHORT identifies
the company that is associated with that token, ORG_SHORT is the name of an organization within
that company, and FOLDER identifies a folder within an organization. Examples of such API calls
are /transcribe/ORG_SHORT/FOLDER, /request/ORG_SHORT, /config/CO_SHORT, /
config/CO_SHORT/ORG_SHORT, and so on. A company's authorization token is found on the
V-Spark Settings page in the Company section, as shown in Figure 1.1, “Location of a Company
Authorization Token”.

Figure 1.1. Location of a Company Authorization Token

1.3. Using�cURL�for�REST�API�Testing

1.3.1. Obtaining�and�Using�the�cURL�program
The cURL utility makes it easy to test using the V-Spark API by providing a simple command-line
mechanism for invoking API methods. cURL is not required to use the V-Spark API, but it can be a

Using the V-Spark 3.5.0 API Chapter 1. V-Spark API Overview

© 2019, Voci Technologies, Inc. Proprietary and Confidential 3

helpful tool, even while developing a more programmatic implementation. The next few sections provide
examples of using the V-Spark API from the command-line via the cURL command.

The cURL utility is freely available for operating systems including Linux, Windows, and Mac OS [https://
curl.haxx.se/download.html]. The command-line command for invoking the cURL utility is curl on
Linux or Apple Mac OS systems. The executable command for invoking the cURL utility is curl.exe
on Microsoft Windows systems.

Important

When using cURL to make API calls, it is important to remember that because URLs
typically include the '?' and '&' symbols to identify HTTP/HTTPS parameters, you must
enclose the URL portion of your cURL command within quotation marks to prevent a Linux
shell from intercepting and interpreting these characters.

In cURL examples and associated output that is provided in this document:

• Escaped newlines (that is, lines in cURL commands or example output that end with a backslash) are
added for readability. They must not be present in cURL commands, and are also not present in the
output of those commands.

• Example commands are shown in normal monospaced text. When example output from those
commands is very short, it is combined into the same monospaced example block as the cURL call itself
and is shown in bold monospaced text. When example output from examples is verbose, that output
is provided as a separate monospace example block.

The JSON that is produced by V-Spark APIs is not easily readable by mere mortals. When using cURL
to make API calls, the output of the cURL command can be piped to Python in order to pretty-print that
output, as in the following example:

cURL command | python -m json.tool

One item to remember when using this model of pretty-printing JSON output is that Python's
json.tool module sorts keys in JSON output alphabetically. If you want to pretty-print JSON
output without reorganizing key values, you may want to use a Python command such as jsonlint,
which includes pretty-printing along with other capabilities and is provided as part of the python-
demjson-1.6-1.el6.noarch package on CentOS systems.

1.3.2. Tips�for�Debugging�and�Managing�cURL�Calls
If you are having problems troubleshooting a curl command, you can obtain verbose debugging
information by appending the --trace-ascii FILENAME to your curl command. This will save a
record of every interaction between the curl command and the host that you are trying to contact into the
file FILENAME. Examining the content of this file can often help you identify the cause of a problem.

The cURL command does not have a built-in timeout. Waiting forever for a cURL command to return
can be irritating because it depends on network congestion and the responsiveness of the host on which
cURL is running, both of which are often out of your control. To specify a timeout for the entire span of
your cURL command, you can add cURL's --max-time SECONDS option to your cURL commands.
This option terminates you cURL command if it exceeds the number of seconds that you specified as
an argument. The cURL command also provides options (--speed-limit and --speed-time that
enable you to set requirements for transfer speed and which provide other ways to automatically terminate
poorly-performing cURL commands.

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Chapter 1. V-Spark API Overview Using the V-Spark 3.5.0 API

4 Proprietary and Confidential © 2019, Voci Technologies, Inc.

The cURL command also provides options that enable you to retrieve the status of a cURL call. You can
use a cURL call like the following to retrieve the HTTP return code from an API call:

 curl -s -LI URL -o /dev/null -w '%{http_code}'

The arguments to this cURL call are the following:

-L Tells cURL to follow the URL if it is marked as having been moved

-I Only returns the HTTP header, which is where the HTTP response code is located

-s Causes cURL to run in silent mode. Ordinarily, cURL displays a progress meter as it executes.

-o Tells cURL where to write the general output of the command. In this case, /dev/null, the Linux
and Mac OS X bit bucket is used. On Windows systems, you can write to a file named nul, for
which Windows provides built-in device driver support.

-w Specifies what cURL should write to standard output, and how to format that information. The string
'%{http_code}' simply writes the contents of the variable http_code

1.4. Using�Python�with�REST�APIs
Python is a very popular programming language is freely available for operating systems including Linux,
Windows, and Mac OS X [https://www.python.org], and is often included as part of a Linux distribution.

As a standard and popular programming language, many books and online articles are available to help
you use Python,

One common problem related to using open source programming languages and public-contributed
libraries is support across different operating system or language versions. For example, if you are running
the sample Python application in this document on a CentOS 6.x system and are using that distribution's
standard Python installation, you may see deprecation warnings for Python functions that are changing
for Python 2.7 and later. To suppress these warnings, you can add the following code to the beginning
of the Python file:

 import warnings

with warnings.catch_warnings():
 warnings.simplefilter("ignore",category=DeprecationWarning)
 import cryptography

If you see deprecation warnings for modules other than cryptography, you can add import statements
for those to suppress the warnings when loading them.

https://www.python.org
https://www.python.org
https://www.python.org

Using the V-Spark 3.5.0 API Chapter 2. Pre-Requisites

© 2019, Voci Technologies, Inc. Proprietary and Confidential 5

Chapter�2. Pre-Requisites
Before you can begin interacting with V-Spark by using all functions within the API, you must create
an Organization, Company, and Folder using the V-Spark GUI and API. A Folder has associated
configuration information such as the language model that is used during transcription and also provides
the names of metadata fields that are available for filtering. See the "V-Spark 3.5.0 Quickstart Guide" and
"V-Spark 3.5.0 Management Guide " or the online documentation for more information about using V-
Spark. PDF versions of these documents are available under the Help pull-down immediately after logging
into V-Spark.

This document focuses on providing information about the V-Spark API. Using the upload and transcribe
(/transcribe) and download (/request) APIs requires less configuration than using V-Spark,
because V-Spark handles the transcription of uploaded audio, and is therefore where most of the
transcription options are specified.

Chapter 2. Pre-Requisites Using the V-Spark 3.5.0 API

6 Proprietary and Confidential

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 7

Chapter�3. Retrieving�and�Updating�V-
Spark�Information

V-Spark provides several REST APIs that enable you to read and, when possible, update V-Spark
configuration, search, status, and log information about a V-Spark installation. All of these APIs return
and use information in JSON format. These APIs are the following:

/config Enables you to retrieve, update, and delete configuration information about the companies,
organizations, folders, and applications in a V-Spark installation. You can also retrieve
information about the users in a V-Spark installation, but you can only update or modify some
user information using the /config API.

/list Enables you to list high-level configuration information about a V-Spark installation. The /
list API provides the names of items within the configuration of a V-Spark installation and
does not include the detailed configuration information that the /config API's GET verb
provides. The /list API does not support any REST verb other than GET.

/search Enables you to search a V-Spark installation for matching text, tags, and so on

/status Enables you to retrieve status information about processing the files in a folder in a V-Spark
installation. The /status API is a read-only API. You can only retrieve status information
using this API. You cannot update or delete status information using the /status API.

When calling any of these APIs, you must provide an authorization token which proves that you are
authorized to perform that operation. For information about the authorization tokens that you can provide
for use with the V-Spark API, see Section 1.2, “V-Spark API Permission Requirements”.

You can use these REST APIs in any programming language or with any application that supports REST
calls and which provides or can invoke a JSON parser that enables you to work with the output of these
calls.

The next few sections explain the capabilities of the /config and /list APIs. Information about
the /status API is provided in Chapter 6, Retrieving Folder Status Information, which contains both
reference information and examples of using those APIs from both the command-line (via cURL) and in
Python applications. Information about the /search API is provided in Chapter 7, Searching V-Spark
Data.

3.1. Retrieving�and�Updating�V-Spark�Installation
Configuration

Voci provides the /config API to enable reading, writing, and deleting V-Spark configuration
information within an application or script. The /config API is the only API in this section that enables
you to write V-Spark information programmatically.

3.1.1. Reference�for�the�/config�API
The /config API enables you to read (GET), write (POST), and delete (DELETE) V-Spark
configuration information.

Synopsis

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

8 Proprietary and Confidential © 2019, Voci Technologies, Inc.

 /config
 /config/users
 /config/orgs
 /config/folders
 /config/apps
 /config/system/readonly
 /config/CO_SHORT
 /config/CO_SHORT/orgs
 /config/CO_SHORT/folders
 /config/CO_SHORT/apps
 /config/CO_SHORT/users
 /config/CO_SHORT/users/USERNAME
 /config/CO_SHORT/ORG_SHORT
 /config/CO_SHORT/ORG_SHORT/folders
 /config/CO_SHORT/ORG_SHORT/apps
 /config/CO_SHORT/ORG_SHORT/FOLDERNAME
 /config/CO_SHORT/ORG_SHORT/apps/APPNAME

As shown in the synopsis, calls to the V-Spark /config API can include optional entries that enable you
to specify the short name of a company (CO_SHORT), the short name of an organization within a company
(ORG_SHORT), the name of a specific folder (FOLDERNAME), the name of a specific user (USERNAME),
or the name of a specific application (APPNAME) to refine and limit the amount of information that you
are retrieving, updating, or adding. See Section 3.1.1.1, “Refining by Companies, Organizations, Folders,
and Apps” for more information.

Calls to the V-Spark API without specific company, organization, folder, user, or application values return
all information for the API that you are calling. In other words, a call to /config/DocTestCo only
returns information about a company whose short name is "DocTestCo". A call to /config returns
information about all of the companies that have been defined in the V-Spark installation that you are
querying.

Description

The preceding calls can GET, POST, or DELETE the following types of information about a V-Spark
installation:

/config Returns information about all companies in a V-Spark installation

/config/orgs Returns information about all organizations that have been defined
under companies in a V-Spark installation

/config/folders Returns information about all folders that have been defined under
organizations in a V-Spark installation

/config/apps Returns information about all applications that have been defined in
a V-Spark installation

/config/users Returns information about all users that have been defined in a V-
Spark installation, the status of their user accounts, the authorization
method used for login, and the permissions that they have in V-Spark
and within each company.

Note

Users are associated with companies. Deleting
companies in a V-Spark installation also deletes any
users associated with those companies.

/config/system/readonly Returns information about whether a V-Spark installation is or
is not running in "read only" mode. You cannot call the /

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 9

config/system API alone without calling /config/system/
readonly API.

Options

In addition to being able to optionally specify the short name of a company or organization to refine the
data that is being returned, calls to the /config method take the following parameters to further control
their behavior:

token The root or a company-specific token for the V-Spark installation about which you want to
retrieve information. This parameter is required. You cannot successfully call any function in
the /config API without an authentication token. The root token for a V-Spark installation
can always be used. A company-specific token can be used for any calls within the scope of that
company. The root token for a V-Spark installation is located in the file /opt/voci/state/
vspark/apitoken. The company-specific token is part of the configuration information for
the associated company. For an example of programmatically retrieving company tokens and
using them with organizations and folders, see Section 3.4.2, “Integrating Multiple GET Results
Using Python”.

tree This parameter is optional, and is only used with the DELETE verb. Companies that contain
users & organizations and organizations that contain folders & applications are not considered
to be empty. By default, only empty elements may be deleted from a V-Spark installation.

true Non-empty companies and organizations will be deleted.

false Non-empty companies and organizations will not be deleted.

To delete a non-empty element with tree, you will also need to set multi to true to enable
multiple items to be deleted at once.

multi This parameter is optional, and is only used with DELETE verb. By default, you can only delete
a single item at one time in a V-Spark installation.

true Multiple items may be deleted at the same time as the result of a single DELETE
request

false Multiple items may not be deleted at the same time, and must be deleted using multiple
DELETE requests

As REST API functions, /config API functions return both an HTTP message and a return code. The
success and failure messages associated with various calls to the /config API are listed in the sections
that describe those calls.

Content Types

• POST method expects to receive JSON files with the "application/json" MIME type, and returns files
with the "text/html" MIME type

• GET method returns JSON formatted data with the "text/html" MIME type

• DELETE method returns plain text data with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

3.1.1.1. Refining�by�Companies,�Organizations,�Folders,�and�Apps
As shown in the synopsis section of the Section 3.1.1, “Reference for the /config API”, API calls
can optionally specify the short name of a company (CO_SHORT), the short name of an organization

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

10 Proprietary and Confidential © 2019, Voci Technologies, Inc.

(ORG_SHORT), the name of a folder (FOLDERNAME), or the name of an application (APPNAME) to limit
the data that is returned by an API call to only that which is specific to those names:

• If the short name of a company (CO_SHORT) is not specified, the JSON that is returned contains
information about all relevant data for any company in a V-Spark installation.

• If the short name of a company is specified, only information that is related to that company is returned.

• If you specify the short name of a company, the short name of an organization (ORG_SHORT), the name
of a folder (FOLDERNAME), or the name of an application (APPNAME), only information associated with
that specified entry is returned. If any of these entries are invalid, the API call returns an error message.
You cannot request or try to update information about an entry if any part of the entry specification
is incorrect.

3.1.2. Sample�JSON�Output�from�the�/config�API
The /config API returns a JSON representation of the V-Spark installation data that is being requested.
The following sections describe the JSON output for each aspect of a V-Spark installation:

• Section 3.1.2.1, “Sample /config JSON Output for a Company”

• Section 3.1.2.2, “Sample /config/orgs JSON Output for an Organization”

• Section 3.1.2.3, “Sample /config/folders JSON Output for a Folder”

• Section 3.1.2.4, “Sample /config/apps JSON Output for an Application”

• Section 3.1.2.5, “Sample /config/users JSON Output for a User”

• Section 3.1.2.6, “Sample /config/system/readonly JSON Output for System Status”

3.1.2.1. Sample�/config�JSON�Output�for�a�Company
Figure 3.1, “Sample Company output from the /config API” shows sample output for a single company
from the /config API.

"DocTestCo": {
 "allowedmodels": [
 "eng1:callcenter",
 "spa1:spa1_callcenter"
],
 "apptemplate": [
 "Agent Scorecard",
 "Call Categorization",
 "Call Drivers",
 "Customer Experience"
],
 "cloudtoken": "",
 "cloudmodels": [],
 "created": "2017-05-18",
 "limithours": -1,
 "name": "Doc Test Co",
 "retention": -1,
 "status": "OK",
 "servers": [
 "asrsrvr1"
],
 "uuid": "077d93ffd9b902b2cb7c6a0c521fd42c"
},...

Figure 3.1. Sample Company output from the /config API

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 11

Note

Figure 3.1 and the other sample JSON files in this document use ellipses (...) to indicate
where more than one of a certain type of section can be present in a JSON file of that type.

The fields in per-company JSON output contain but are not limited to the information that you provide
when creating a company using the V-Spark graphical user interface. Figure 3.2, “Creating a Company in
the V-Spark GUI” shows the first dialog used when creating a company in the V-Spark user interface.

Figure 3.2. Creating a Company in the V-Spark GUI

For detailed information about creating a new company in the V-Spark GUI, see the section "Create a
Company" in the V-Spark 3.5.0 Management Guide.

This excerpt from the output of calling the /config API shown in Figure 3.1, “Sample Company output
from the /config API” is very similar to the output that you would have received had you requested
information about a single company by calling an API such as the /config/DocTestCo API on a V-
Spark installation where the "Doc Test Co" company (with the company short name, "DocTestCo") had
been defined. The latter call would have returned the following, which differs only in that it does not need
to identify the short name of the company that it refers to because it was specified in the URL.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

12 Proprietary and Confidential © 2019, Voci Technologies, Inc.

{
 "uuid": "077d93ffd9b902b2cb7c6a0c521fd42c",
 "name": "Doc Test Co",
 "created": "2018-06-07",
 "limithours": -1,
 "cloudtoken": "",
 "cloudmodels": [],
 "allowedmodels": [
 "eng1:callcenter",
 "spa1:callcenter"
],
 "servers": [
 "asr-wvh.office.company.com",
 "asrsrvr1",
 "asrsrvr8",
 "http://asrsrvr8:17171"
],
 "retention": -1,
 "apptemplate": [
 "Agent Scorecard",
 "Call Categorization",
 "Call Drivers",
 "Customer Experience"
],
 "status": "OK"
}

Figure 3.3. Sample Company output from the /config/CO_SHORT API

uuid The authorization token for this company. Use the uuid to retrieve or modify
data about any organization, folder, apps, or user that have been defined under this
company.

This field is added by V-Spark when the company is created, and is read-only.

"uuid": "077d93ffd9b902b2cb7c6a0c521fd42c"

name The full display name of the company.

This field is required when creating a new company.

"name": "Doc Test Co"

created The year, month, and day that the company was created in V-Spark.

This field is added by V-Spark when the company is created, and is read-only.

"created": "2018-06-07"

limithours The maximum number of audio hours this company can process through V-Spark.
Once that limit has been reached, the company can no longer process new audio, but
user's can still use V-Spark to examine existing calls.

This field is required when creating a new company. A value of "-1" means there
is no limit.

"limithours": -1

servers Networked computers this company uses as hosts for ASR.

This field should only be set if cloudtoken is not set. If cloudtoken is not
set, this field is required.

"servers": [
 "asr-wvh.office.company.com",
 "asrsrvr1",
 "asrsrvr8",
 "http://asrsrvr8:17171"
]

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 13

allowedmodels Transcription models that are available to this company when processing audio on
servers.

This field should only be set if servers is set.

"allowedmodels": [
 "eng1:callcenter",
 "spa1:callcenter"
]

cloudtoken The authorization token this company uses when connecting to V-Cloud servers. If
this company is using servers no cloud token will be listed.

If you are creating the company, and the company will be processing audio on V-
Cloud this field must be defined.

This field should only be set if servers is not set. If servers is not set, this
field is required.

"cloudtoken": ""

cloudmodels Transcription models this company can use when processing audio on V-Cloud
servers.

This field should only be set if cloudtoken is set and custom models will be used.

"cloudmodels": []

retention The maximum number of days transcription data can be retained by V-Spark for
organizations within this company before the data is deleted.

This field is required when creating a new company. A value of -1 indicates that
this company has no limit, and that data is retained indefinitely.

"retention": -1

apptemplate Application templates that are available for this company.

This field is optional.

"apptemplate": [
 "Agent Scorecard",
 "Call Categorization",
 "Call Drivers",
 "Customer Experience"
]

status High-level status information about the company, useful for long-running operations
such as a DELETE. A status of "OK" indicates that any operations on the company
have completed their work.

This field is read-only.

"status": "OK"

3.1.2.2. Sample�/config/orgs�JSON�Output�for�an�Organization
Figure 3.4, “Sample Organization output from the /config/orgs API” shows sample output for a single
organization from the /config/orgs API.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

14 Proprietary and Confidential © 2019, Voci Technologies, Inc.

"DocTestCo": {
 "DocTestCo-DocTesting": {
 "company": "DocTestCo",
 "created": "2017-05-18",
 "name": "Doc Testing",
 "retention": -1,
 "status": "OK",
 "timezone": "US/Eastern"
 },...
},...

Figure 3.4. Sample Organization output from the /config/orgs API

The fields in per-organization JSON output, as shown in Figure 3.4, “Sample Organization output from
the /config/orgs API”, include but are not limited to the information that you provide when creating an
organization using the V-Spark graphical user interface. Figure 3.5, “Creating an Organization in the V-
Spark GUI” shows the first dialog used when creating an organization in the V-Spark user interface.

Figure 3.5. Creating an Organization in the V-Spark GUI

When creating a new organization using the /config/orgs API, all fields that are not read-only are
required.

company The "short name" of the company to which the organization belongs.

"company": "DocTestCo",

created The date, in YYYY-MM-DD format, that the organization was created.

This field is added by V-Spark when the organization is created, and is read-only.

"created": "2017-05-18",

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 15

name The full display name of the organization.

"name": "Doc Testing",

retention The maximum number of days transcription data is retained by V-Spark for this
organization before the data is deleted. The retention period specified for the organization
must be less than or equal to the retention period of the organization's owning company.
A value of -1 indicates that this organization has no limit, and that data is retained
indefinitely.

"retention": -1,

status High-level status information about the organization, useful for long-running operations
such as a DELETE. A status of "OK" indicates that any operations on the organization
have completed their work.

"status": "OK",

timezone The time zone in which this organization should be considered to exist. This is usually
the time zone of the main office of the organization. This does not just affect the time
and date as displayed in V-Spark, but also affects the time at which certain actions
(such as report generation) occur. This value must be a valid "TZ database name" for
a time zone. Refer to the List of tz database time zones [https://en.wikipedia.org/wiki/
List_of_tz_database_time_zones] for more information.

"timezone": "US/Eastern"

For more detail on the information that is part of the definition of an organization, see the section entitled
"Create an Organization" in the V-Spark 3.5.0 Management Guide.

The JSON excerpt shown in Figure 3.4, “Sample Organization output from the /config/orgs API”, from
the output of calling the /config/orgs API, is very similar to the output that you would have
received had you requested information about a single organization by calling an API URL such as the
/config/DocTestCo/DocTestCo-DocTesting API on a V-Spark installation where the "Doc
Test Co" company and "Doc Testing" organization (with the company short name, "DocTestCo" and the
Organization short name of "DocTestCo-DocTesting") had been defined. This call would have returned the
output shown in Figure 3.6, “Sample Organization output from the /config/CO_SHORT/ORG_SHORT
API”, which differs only in that it does not need to identify the short name of the company and organization
that it refers to because it was specified in the URL.

{
 "company": "DocTestCo",
 "created": "2017-05-18",
 "name": "Doc Testing",
 "retention": -1,
 "timezone": "US/Eastern"
 }

Figure 3.6. Sample Organization output from the /config/CO_SHORT/
ORG_SHORT API

3.1.2.3. Sample�/config/folders�JSON�Output�for�a�Folder
Figure 3.7, “Sample Folder output from the /config/folders API” shows sample output for a single folder
from the information retrieved via the /config/folders API.

https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones
https://en.wikipedia.org/wiki/List_of_tz_database_time_zones

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

16 Proprietary and Confidential © 2019, Voci Technologies, Inc.

"DocTestCo": {
 "DocTestCo-DocTesting": {
 "Test01": {
 "apps": [],
 "asroptions": {
 "billing": "customerX"
 },
 "audiotype": "Mono",
 "callback": {
 "aws_id": "123456789012345678901",
 "aws_secret": "123456789012345678901/12345678901234567890",
 "posturl": "S3:///joeuser/test",
 "sendaudio": "no",
 "sendtext": "no"
 },
 "created": "2017-05-18",
 "custom_meta": [],
 "mode": "active",
 "modelchan0": "eng1:callcenter",
 "nspeakers": 1,
 "purifyaudio": true,
 "purifytext": true,
 "status": "OK",
 "servers": [
 "asrsrvr1"
]
 },...
 },...
},...

Figure 3.7. Sample Folder output from the /config/folders API

The fields in per-folder JSON output contain but are not limited to the information that you provide when
creating a folder using the V-Spark graphical user interface. For example, when providing JSON to the
API in to create a folder, the created field need not be specified because it defaults to the current time.
Figure 3.8, “Creating a Folder in the V-Spark GUI” shows the first dialog used when creating a folder in
the V-Spark user interface.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 17

Figure 3.8. Creating a Folder in the V-Spark GUI

When creating a new folder using the /config/folders API, all fields that are not read-only are
required.

apps Applications that are linked to this folder that will analyze this folder's content.

"apps": [],

asroptions ASR stream tags that have been added to this folder. Tags are parameters that affect
transcription requests. For detailed information about available ASR options, see
"Using the V-Blaze API".

"asroptions": {
 "billing": "customerX"
},

audiotype Whether the audio is 2 channel "Stereo" or 1 channel "Mono" audio.

This field is required when creating a new folder.

"audiotype": "Mono",

callback Callback options for transcript delivery. For more information on using callbacks, see
Section 5.1, “Using Callbacks in V-Spark”.

"callback": {
 "aws_id": "123456789012345678901",
 "aws_secret": "123456789012345678901/12345678901234567890",
 "posturl": "S3:///joeuser/test",
 "sendaudio": "no",
 "sendtext": "no"
},

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

18 Proprietary and Confidential © 2019, Voci Technologies, Inc.

posturl The path that V-Spark will use to deliver transcripts and other
information. This URL must start with a valid protocol, (such as
"http://", "https://", "file://", "sftp://", or "s3://") and include any
needed hostname, port number, and file system path.

aws_id Your AWS access key id.

This setting is required if posturl is set to an "s3://" URL.

aws_secret Your AWS secret access key.

This setting is required if posturl is set to an "s3://" URL.

username The username on the remote system that V-Spark should use to
log in.

This setting and password are required if posturl is set to
an "sftp://" URL and sshprivatekey is not set.

password The login password of the username account on the remote
system,

This setting and username are required if posturl is set to
an "sftp://" URL, and sshprivatekey is not set.

sshprivatekey or The ssh private key of the username account on the remote
system

This setting and username are required if posturl is set to
an "sftp://" URL, and sshprivatekey is not set.

sendaudio This setting is required if posturl is set.

The value must be set to either "yes" or "no". If set to "yes", V-
Spark will send an MP3 version of the transcribed audio file to
the callback server.

sendtext This setting is required if posturl is set.

The value must be set to either "yes" or "no". If set to "yes", V-
Spark will send a plain text version of the transcribed audio file
to the callback server.

created The date, in YYYY-MM-DD format, that the folder was created.

This field is added by V-Spark when the folder is created, and is read-only.

"created": "2017-05-18",

custom_meta Custom metadata fields that are associated with this folder.

"custom_meta": [
 "client name",
 "phone number"
],

mode The mode field in the JSON output for a Folder indicates whether processing of
that folder is "active" or "paused". Use the /config/folders API to pause and resume
processing of the folder. Pause the processing of a Folder by POSTing a JSON

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 19

configuration file for the Folder that has the mode property of the Folder set to the
value paused. Resume processing by POSTing JSON for the Folder that has the mode
property set to active. You will not be able to set Folder processing to active if
the Folder has been paused due to company-level policies such as the processing hours
limit being met.

"mode": "active",

modelchan0 The language model to use when processing audio on Channel 0, which is the left
channel if you are processing stereo audio.

Acceptable values are limited to the names of the language models you are licensed to
use. All language models work with all supported audio formats.

"modelchan0": "eng1:callcenter",

modelchan1 The language model to use when processing audio on Channel 1, which is the right
channel if you are processing stereo audio. If this folder is not configured to process
stereo audio, you will not have a modelchan1.

Acceptable values are limited to the names of the language models you are licensed to
use. All language models work with all supported audio formats.

"modelchan1": "spa1:callcenter",

agentchan If this folder is configured to process stereo audio, the value of this field must be either
"0" or "1", indicating the audio channel that contains agent speech.

"agentchan": "0",

nspeakers The number of speakers in the audio files that are going to be placed into the folder.

This field is required when creating a new folder. This option cannot be modified
after the folder is created.

"nspeakers": 1,

purifyaudio If set to "true", processing cleans the generated audio MP3 of any locations where
numbers exist for Payment Card Information (PCI) or other sensitive numbers that are
in the audio source so that these numbers cannot be heard.

If set to "false", audio is not scrubbed.

This option cannot be modified after the folder is created.

"purifyaudio": true,

purifytext If set to "true", processing cleans the text transcript of any numbers for Payment Card
Information (PCI) or other sensitive numbers that are in the audio source.

If set to "false", text is not scrubbed.

This option cannot be modified after the folder is created.

"purifytext": true,

status High-level status information about the folder, useful for long-running operations such
as a DELETE.

A status of "OK" indicates that any operations on the folder have completed their work.

"status": "OK",

servers The name(s) of the V-Spark servers that will be used for ASR.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

20 Proprietary and Confidential © 2019, Voci Technologies, Inc.

You must specify at least one server or vcloud:cloudtoken statement.

"servers": [
 "asrsrvr1"

For more information about the information that is part of the definition of a folder, see the section
"Creating a Folder" in the V-Spark 3.5.0 Management Guide.

The excerpt from the output of calling the /config/folders API, shown in Figure 3.7, “Sample Folder
output from the /config/folders API”, is very similar to the output that you would have received had you
requested information about a single folder by calling an API URL such as the /config/DocTestCo/
DocTestCo-DocTesting/Test01 API on a V-Spark installation where the "Doc Test Co" company,
the "Doc Testing" organization, and the folder "Test01" (with the company short name, "DocTestCo",
the Organization short name of "DocTestCo-DocTesting", and the folder name of "Test01") had been
defined. The latter call would have returned JSON like that shown in Figure 3.9, “Sample Folder output
from the /config/CO_SHORT/ORG_SHORT/FOLDERNAME API”, which differs only from the output
shown in Figure 3.7 in that it does not need to identify the short name of the company, the short name of
the organization, or the name of the folder that it refers to because they are specified in the URL.

{
 "apps": [],
 "asroptions": {
 "billing": "DocTestCo-DocTesting-Test01"
 },
 "audiotype": "Mono",
 "callback": {
 "aws_id": "0SAMPLEVALUED0N0TUSE",
 "aws_secret": "ThisIsAlsoASample000/NotARealAWSSecret00",
 "posturl": "S3:///wvh/test",
 "sendaudio": "no",
 "sendtext": "no"
 },
 "created": "2017-05-18",
 "custom_meta": [],
 "mode": "active",
 "modelchan0": "eng1:callcenter",
 "nspeakers": 1,
 "purifyaudio": true,
 "purifytext": true,
 "servers": [
 "asrsrvr1"
]
}

Figure 3.9. Sample Folder output from the /config/CO_SHORT/ORG_SHORT/
FOLDERNAME API

3.1.2.4. Sample�/config/apps�JSON�Output�for�an�Application
Figure 3.10, “Sample Application output from the /config/apps API” shows sample output for a single
application from the /config/apps API for the applications that have been defined for a single
organization.

"DocTestCo": {
 "DocTestCo-DocTesting": {
 "Admin App": {
 "created": "2017-06-23",
 "defaultscoretype": "Hit/Miss",
 "enabled": "on",
 "folders": [
 "Test01"
],
 "template": "custom"
 },...
 },...
},...

Figure 3.10. Sample Application output from the /config/apps API

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 21

The fields in application-related JSON output contain but are not limited to the information that you
provide when creating an application using the V-Spark graphical user interface. Figure 3.11, “Creating
an Application in the V-Spark GUI” shows the first dialog used when creating an application in the V-
Spark user interface.

Figure 3.11. Creating an Application in the V-Spark GUI

created The date, in YYYY-MM-DD format, that the application was created.

This field is added by V-Spark when the application is created, and is read-only.

"created": "2017-06-23",

defaultscoretype The default type of score to use for categories that are created within this
application. Values for this field are "Coverage", or "Hit/Miss".

For more information on the meanings of these score types, refer to V-Spark
3.5.0 Application Development Guide.

"defaultscoretype": "Hit/Miss",

enabled Whether or not this application is actively scoring new file uploads to the folders
it scores. Values are "on" and "off". Disabled ("off") applications can still be
edited and their existing results viewed, but no new results will be created until
the application is re-enabled.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

22 Proprietary and Confidential © 2019, Voci Technologies, Inc.

"enabled": "on",

folders The name(s) of the folder(s) this application will score.

"folders": [
 "Test01"
],

template The name of the application template on which this application is based, or
"custom" indicating that this application is not based on a pre-defined template.

This field is required when creating a new application. The template option
to Copy from existing organization is not supported in the API.

"template": "custom"

For detailed information about the information that is part of the definition of an application, see the
section entitled "Creating an Application" in the V-Spark 3.5.0 Management Guide. For information about
retrieving and uploading applications using the API, see Chapter 9, Configuring V-Spark Applications.

The excerpt from the output of calling the /config/apps API shown in Figure 3.10, “Sample
Application output from the /config/apps API” is very similar to the output that you would have received
had you requested about the applications that are associated with an organization by calling an API
URL such as /config/DocTestCo/DocTestCo-DocTesting/apps/Admin%20App API, as
shown in Figure 3.12, “Sample Application output from the /config/CO_SHORT/ORG_SHORT/apps/
APPNAME API”. This sample output is from a V-Spark installation where the "Doc Test Co" company
and the "Doc Testing" organization (with the company short name, "DocTestCo" and the Organization
short name of "DocTestCo-DocTesting"), and the Application "Admin App" had been defined. (When
supplied as part of a URL, the %20 is required in order to URL-encode the space in the name.) This output
differs only in that it does not need to identify the short name of the company, organization, and application
that it refers to, since test values were specified in the URL.

{
 "created": "2017-06-23",
 "defaultscoretype": "Hit/Miss",
 "enabled": "on",
 "folders": [
 "Test01"
],
 "template": "custom"
}

Figure 3.12. Sample Application output from the /config/CO_SHORT/
ORG_SHORT/apps/APPNAME API

Note

Application names can contain spaces, which must be URL-encoded by replacing them with
%20 when specifying the name of an application as part of a URL.

3.1.2.5. Sample�/config/users�JSON�Output�for�a�User

Important

Users are defined within companies, and are therefore deleted when the company that they
are associated with is deleted.

Figure 3.13, “Sample User Information from the /config/users API” shows an excerpt that contains sample
output for a single user from the /config/users API.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 23

"Testing": {
 "joe.user": {
 "auth": {
 "disabled": false,
 "verified": true,
 "method": "standard"
 },
 "company": "Testing",
 "email": "joeuser@example.com",
 "name": "Joe User",
 "permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 },
 "Testing": {
 "all": [
 "read"
],
 "orgs": {
 "Testing-CallbackTest": [
 "write"
],
 "Testing-ApplicationTesting": [
 "write"
]
 }
 }
 }
 }
}...

Figure 3.13. Sample User Information from the /config/users API

The identifier for each user account object is the username that identifies this account. When creating new
user accounts, keep in mind that the username for each user in V-Spark must be unique to the V-Spark
installation.

The fields in per-user JSON output contain but are not limited to the information that you provide when
registering for a user account using the V-Spark graphical user interface. Figure 3.14, “Registering for a V-
Spark Account” shows the first dialog used when registering for an account in the V-Spark user interface.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

24 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Figure 3.14. Registering for a V-Spark Account

auth The authorization status of this account and authentication method used to verify the
identity of the user when they log in.

"auth": {
 "disabled": false,
 "verified": true,
 "method": "standard",
 "password": "4s+7yaRf"
},

disabled Either "false", denoting an active account, or "true", denoting an account
that has been disabled or has not yet been enabled after creation.

verified Either "false", denoting a requested account that has not yet been
approved, or "true", denoting an account that has been verified and
approved by a System or Company admin.

method How the user's identity will be authenticated when they log in. A value
of "standard" indicates that internal V-Spark authentication is used. Any
other value indicates the integrated authentication method that should be
used.

password Only be provided when creating a new account with standard
authentication. This value will serve as the account's initial password.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 25

company The short name of the company within which this account exists. This is also referred
to as the account's "home company".

This field is required when creating a new account.

"company": "Testing",

email The fully qualified email address associated with this account.

This field is required when creating a new account. The email address for each user
in V-Spark must be unique to the V-Spark installation.

"email": "joeuser@example.com",

name The name of the person who uses this account.

This field is required when creating a new account.

"name": "Joe User",

permissions Permissions that this user account has for the companies and organizations in the V-
Spark installation. For detailed information about user permissions, see Section 3.2,
“Permissions and Capabilities in the /config/users API”

In the following example, the user account has read and write permissions to all
organizations within the "DocTestCo" company, read permissions to all organizations
within the "Testing" company, and additional write permissions to the "CallbackTest"
and "ApplicationTesting" organizations that are within the "Testing" company.

"permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 },
 "Testing": {
 "all": [
 "read"
],
 "orgs": {
 "Testing-CallbackTest": [
 "write"
],
 "Testing-ApplicationTesting": [
 "write"
]
 }
 }
}

For information about registering for an account in the V-Spark GUI, see the section entitled "Create a
User Account" in the V-Spark 3.5.0 Management Guide. For information about types of V-Spark accounts,
see the section entitled "User Account Types" in the V-Spark 3.5.0 Management Guide.

The output shown in Figure 3.13, “Sample User Information from the /config/users API”, an excerpt
from the output of calling the /config/users API, is very similar to the first part of the output that
you would have received had you called the /config/TestCompany/users API on a V-Spark
installation where the "Test Company, Inc." company (with the company short name, "Testcompany") had
been defined. The latter call would have returned JSON, as shown in Figure 3.15, “Sample User output
from the /config/CO_SHORT/users API”, which only differs from the previous excerpt in that it does not
need to identify the short name of the company that it refers to, since you have specified that value in
the URL.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

26 Proprietary and Confidential © 2019, Voci Technologies, Inc.

The identifier for each user account object is the username that identifies this account. When creating new
user accounts, keep in mind that the username for each user in V-Spark must be unique to the V-Spark
installation.

{
 "joe.user": {
 "company": "Testing",
 "email": "joe.user@company.com",
 "name": "Joe User",
 "auth": {
 "disabled": false,
 "verified": true,
 "method": "standard"
 },
 "permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 },
 },...
 }
}

Figure 3.15. Sample User output from the /config/CO_SHORT/users API

3.1.2.6. Sample�/config/system/readonly�JSON�Output�for�System
Status

Important

Because only the /readonly API exists under /config/system, there is no more
general /config/system API. Attempting to GET, POST, or DELETE to the /
config/system API directly will return HTTP error code 400.

Readonly mode enables administrators to perform maintenance or diagnose performance problems while
a V-Spark installation is still running. While a V-Spark system is in readonly mode, no new data can be
processed and no changes can be made to the V-Spark installation. V-Spark can still be used to examine
existing data that has already been processed.

The /config/system/readonly API reports on the readonly status of the system, and displays the
system-wide message that will be shown in V-Spark to notify users that the system has been put into
readonly mode.

{
 "message": "Sample message about readonly mode",
 "status": false
}

Figure 3.16. Sample output from the /config/system/readonly API

message When any user logs into this V-Spark installation while the system is in readonly mode, this
message will be displayed.

"message": "Sample message about readonly mode",

status If set to "true", the system is in readonly mode. Putting a V-Spark installation into readonly
mode only affects the V-Spark installation. The rest of the processes on the host where V-
Spark is installed continue to operate normally.

If set to "false", the system is not in readonly mode.

"status": false

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 27

3.2. Permissions�and�Capabilities�in�the�/config/
users�API

This section discusses permissions and capabilities that are specific to the /config/users API. For
general information about the authorization tokens that are used by the V-Spark API, see Section 1.2, “V-
Spark API Permission Requirements”. For general information about the authorization tokens that are used
by the V-Spark API, see Section 1.2, “V-Spark API Permission Requirements”.

As an administrative API, the /config/users API provides capabilities that are specific to its use in
the context of a V-Spark installation and which make the API easier to use in an enterprise environment of
any size. The next few sections discuss aspects of the /config/users API that are particular to both
that API and to its use as a programmatic mechanism for configuring V-Spark in a corporate environment.

3.2.1. V-Spark�Permissions�and�the�/config/users�API
The /config/users API enables you to set the read/write permissions (referred to as View and
Create/Edit permissions, respectively, within the V-Spark GUI) for each user within three different
scopes:

• System admin - a system administrator role that gives a user read/write permissions to any aspect of a
V-Spark installation that can be configured within the V-Spark GUI. This enables them to create, delete,
and modify V-Spark users, companies, and organizations, as well as add system-wide announcements
or put the system into read-only mode. Figure 3.17, “Sample User JSON for a System Administrator”
shows sample JSON that describes a user with system administrator permissions. Note that system
administration permissions are in a special section that is labeled system.

In Figure 3.17, you'll note that there is no View (read) permission in the System admin group. That
is because the read permission is inherently available at the system level when a user already has the
privilege to Create/Edit (write) to any part of the V-Spark configuration data.

"DocTestCo": {
 "test.user.01": {
 "name": "System Administrator",
 "email": "test.user.01@company.com",
 "company": "DocTestCo",
 "auth": {
 "verified": false,
 "disabled": false,
 "method": "standard"
 },
 "permissions": {
 "system": [
 "write"
]
 }
 }...
}...

Figure 3.17. Sample User JSON for a System Administrator

• company-level permissions - gives a user View and Create/Edit permissions within the specified
company. Write permission enables the user to create and add users to that company, and set the
permissions of those users. Write permissions at the company level also grant the ability to create and
edit organizations, folders, and applications within the company. Read permission enables the user to
view dashboards and transcripts for any existing or newly created organization within the specified
company. Figure 3.18, “Sample User JSON with Company-Level Permissions” shows the JSON for a
user with company-level permissions for the company DocTestCo.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

28 Proprietary and Confidential © 2019, Voci Technologies, Inc.

"manual.user.03": {
 "auth": {
 "disabled": false,
 "verified": true,
 "method": "standard"
 },
 "company": "DocTestCo",
 "email": "manual.user.03@company.com",
 "name": "Manual User 03",
 "permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 }
 }...
}...

Figure 3.18. Sample User JSON with Company-Level Permissions

• organization-level permissions - gives a user View and Create/Edit permissions within the specified
organization. Write permission enables the user to create and modify folders and applications that are
associated with that organization. Read permission enables the user to view dashboards and transcripts
for that organization. Figure 3.19, “Sample User JSON with Organization-Level Permissions” shows the
JSON for a user with organization-level permissions for the organization DocTestCo-DocTesting.

"manual.user.03": {
 "auth": {
 "disabled": false,
 "verified": true,
 "method": "standard"
 },
 "company": "DocTestCo",
 "email": "manual.user.03@company.com",
 "name": "Manual User 03",
 "permissions": {
 "DocTestCo": {
 "orgs": {
 "DocTestCo-DocTesting": [
 "read",
 "write"
]...
 }
 }...
 }...
}...

Figure 3.19. Sample User JSON with Organization-Level Permissions

V-Spark provides a sophisticated and easy-to-use API for creating companies, organizations, and users.
The GUI also makes it very easy to set and modify user permissions. See the "V-Spark 3.5.0 Management
Guide" for detailed information about using the GUI.

Important

When viewing or modifying user permissions via the API but verifying them in the GUI,
you must be logged in to the GUI as a user who is authorized to see any changes that have
been made. You will only be able to see changes that have been made at a level that is equal
to or lower than your current authorization level.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 29

3.2.2. Differences�between�GET�and�POST�JSON�for�the�/
config/users�API

The /config/users API supports additional name/value pairs that can be used as part of your JSON
input when programmatically creating user accounts. These fields are in addition to those shown in
Figure 3.13, “Sample User Information from the /config/users API”:

password Enables you to specify the password that will be assigned to a user account when it is created.
An example of specifying a password using this field is the following:

"password": "changeme",

If the password field is not included in the auth section of the JSON for a user, a
reset password link will be emailed to the new user. Figure 3.20, “Sample User JSON
Including a Password Field” shows sample JSON for a user who has system administration
permissions for their home company (DocTestCo, in this case) and has a default password
of changeme. See Section 3.2.1, “V-Spark Permissions and the /config/users API” for a
discussion of user permissions and roles in the API.

{
 "test.user.02": {
 "name": "Company-Level Administrator",
 "email": "test.user.02@example.com",
 "company": "DocTestCo",
 "auth": {
 "verified": true,
 "disabled": false,
 "method": "standard",
 "password": "changeme"
 },
 "permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 }
 }
 }
},...

Figure 3.20. Sample User JSON Including a Password Field

method Enables you to specify the authorization method that will be used to verify the user's identity
when they log in. This name must have one of the following values:

standard for internal V-Spark authorization

ldap For external authorization through a Lightweight Directory Access Protocol
server such as Microsoft Active Directory.

This option is only useful when you are creating a new account. Once the user's authorization
method has been set, it cannot be changed.

Important

When creating a user account that will be integrated with an external
authorization mechanism, the Username for the account that you are creating
must be the same in V-Spark as it is in the external authorization mechanism.
This username may be a simple username, an email address, or a "user
principle name" (UPN), depending on the service.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

30 Proprietary and Confidential © 2019, Voci Technologies, Inc.

The additional name/value pair(s) discussed in the previous list can also be used in JSON input that is
provided to calls to the /config/CO-SHORT/users API. The primary difference between the JSON
that is provided in calls to that API and to the /config/users API is the JSON that is provided in calls
to the /config/users API must specify the company under which each user is to be created.

3.3. Using�the�/config�API�with�cURL
The next few topics discuss how to retrieve configuration information for V-Spark using the /config
API's GET method, how to create or update V-Spark configuration information using the /config API's
POST method, and how to delete V-Spark configuration information using the /config API's DELETE
method.

If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

3.3.1. GET'ing�Information�Using�cURL�and�the�/config�API
This section discusses how to use the /config API to retrieve configuration information from a specified
V-Spark installation. A sample cURL command to retrieve information about all of the organizations in
a V-Spark installation is the following:

curl -s $PROTOCOL://$HOST:$PORT/config/orgs?token=TOKEN

The variables in this command are the following:

PROTOCOL The protocol that your V-Spark installation uses to communicate over the network, one of
http or https. V-Spark installations use the http protocol by default.

HOST The host on which your V-Spark installation is running, specified by host name or IPv4
IP address.

PORT The network port that the V-Spark installation is listening on. The default is port 3000,
which must still be specified in V-Spark REST API calls.

TOKEN An authorization token that enables calls to the /config API to access all data in a V-Spark
installation. If you are using cURL to use the API to retrieve or modify information that is
associated with a specific company, you can provide that company's authorization token to
authorize your access. If you are requesting higher-level information, you can always use
the V-Spark installation's root token to obtain the information that you are requesting. The
root token for a default V-Spark installation is located in the file /opt/voci/state/
vspark/apitoken. Finding a company's authorization token is shown in Figure 1.1,
“Location of a Company Authorization Token”.

Note that no REST verb (GET, POST, DELETE) has been specified in the preceding cURL command. That
is because the cURL command defaults to performing a GET operation when no REST verb is specified.

As an example, the cURL command to use the HTTP protocol to retrieve configuration information for
the organizations that have been defined in a V-Spark installation on the host example.company.com
is the following:

curl -s http://example.company.com/config/orgs?token=123456789012345678901234567890123

The previous curl commands retrieved information about all of the organizations within an entire V-Spark
installation, and therefore required providing the root token for that installation. To retrieve information

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 31

about organizations within a specific company, you can use that company's token, so an example would
be the following:

curl -s http://example.company.com/config/CO_SHORT/orgs?token=company-token

See Section 1.2, “V-Spark API Permission Requirements” for information about retrieving the type of
token that you want to use.

When calling the config API and providing entries that you want to create or modify in JSON format, you
must make sure that you are calling the API with JSON that corresponds to the URL that you are specifying.
For example, the /config/users API can also be called as /config/CO_SHORT/users to get
information about the users within a specific company. When calling the /config/users API to create
or modify user information, the user information must be top-level JSON information about the company
with which you want to associate the user, as shown in Figure 3.21, “Sample User JSON for use with
the /config/users API”.

"DocTestCo": {
 "test.user.07": {
 "name": "Another Automated Test User",
 "email": "test.user.07@example.com",
 "company": "DocTestCo",
 "auth": {
 "verified": false,
 "disabled": false,
 "method": "standard"
 },
 "permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 }
 }
 }
}

Figure 3.21. Sample User JSON for use with the /config/users API

When calling the /config/CO_SHORT/users API to create or modify user information, the user
information must be top-level JSON information about the user, and does not need to nest the user
information within the company information, because you are specifying the company that the user is
associated with as part of the URL. Figure 3.22, “Sample User JSON for use with the /config/CO_SHORT/
users API” shows the same information about a user that was shown in Figure 3.21, “Sample User JSON
for use with the /config/users API”, except that the JSON in Figure 3.22 does not need to nest the user
information within a company identifier.

 {
 "test.user.07": {
 "auth": {
 "disabled": false,
 "verified": true,
 "method": "standard"
 },
 "company": "DocTestCo",
 "email": "test.user.07@example.com",
 "name": "Another Automated Test User",
 "permissions": {
 "DocTestCo": {
 "all": [
 "read",
 "write"
]
 }
 }
 }...
 }

Figure 3.22. Sample User JSON for use with the /config/CO_SHORT/users API

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

32 Proprietary and Confidential © 2019, Voci Technologies, Inc.

If you deliver JSON at the wrong level to any V-Spark API, you will receive an error code (400). Ensuring
that you have sent the level of JSON that corresponds to the API URL call that you are making is the
first thing that you should check when an API call is failing and you are sending JSON that you know
to be valid.

3.3.2. POST'ing�Information�Using�cURL�and�the�/config
API

Use the /config API to update the configuration of a V-Spark installation.

Note

The /config/system API does not accept POST requests. At this time, the /config/
system API only returns system read only settings and read only settings must be updated
directly using the /config/system/readonly API.

The cURL commands to POST data to the V-Spark API are slightly more complex than commands to
GET or DELETE portions of a V-Spark installation. As an example, a sample cURL command to use the
JSON file config.json to make sure that the companies that it describes are defined in the V-Spark
installation on the host example.company.com is the following:

curl -s -X POST -H "Content-Type:application/json" \
 "http://example.company.com/config?token=TOKEN" --data @config.json

When using cURL and a command like this one to POST data to a host, the information about the
protocol, host, and port is required, as is the token that ensures that you have rights to access the V-
Spark installation.

You must also use the following cURL options:

-X Identifies the request method to use (POST) when communicating with the target HTTP server

-H Identifies the type of content that you are sending ("Content-Type:application/json").

-d Identifies the data that you are sending to the HTTP server. File names must be preceded by an @
symbol. You can also use the - symbol after an @ symbol to indicate that the data to send to the HTTP
server will be coming from standard input on your system (such as when a cURL POST command
uses a pipe to receive data from another application).

The cURL command's -s command-line argument is optional, causing the cURL command to run in silent
mode, where it does not display progress information or error messages.

Data that is written to a V-Spark installation is additive - if some of the objects that are described by
portions of the data that you are writing already exist, they will be updated (if necessary) to reflect their
descriptions in your JSON data. Only objects that do not exist will be created. Objects that already exist
but are not described in your JSON input will be preserved in their current configuration.

3.3.3. DELETE'ing�Information�Using�cURL�and�the�/config
API

Use the /config API to delete information about companies, organizations, folders, applications, and
users.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 33

The cURL commands to DELETE V-Spark configuration data using the V-Spark API enable you to delete
all, or specified, companies, organizations, folders, and applications. These commands do not require
JSON data as an input, but simply require that you identify the object or objects that you want to delete.
The /config API's DELETE methods provide two options that enable you to refine the scope of what
is being deleted:

tree This parameter is optional, and is only used with the DELETE verb. Companies that contain
users & organizations and organizations that contain folders & applications are not considered
to be empty. By default, only empty elements may be deleted from a V-Spark installation.

true Non-empty companies and organizations will be deleted.

false Non-empty companies and organizations will not be deleted.

To delete a non-empty element with tree, you will also need to set multi to true to enable
multiple items to be deleted at once.

multi This parameter is optional, and is only used with DELETE verb. By default, you can only delete
a single item at one time in a V-Spark installation.

true Multiple items may be deleted at the same time as the result of a single DELETE
request

false Multiple items may not be deleted at the same time, and must be deleted using multiple
DELETE requests

For example, a cURL command to delete the single folder Test01 and everything below it is the
following:

curl -s -X DELETE example.company.com/config/DocTestCo/DocTestCo/Test01\
 ?token=123456789012345678901234567890123

In this example command, you are only deleting a single folder, so you do not need to specify the
multi=true parameter. You do not need to specify the tree=true options because there is nothing
that is hierarchically under a single folder.

As another example, a cURL command to delete all folders and everything below them is the following:

curl -s -X DELETE example.company.com/config/folders \
 ?token=123456789012345678901234567890123&multi=true

In this example, you do not need to specify the tree=true parameter because nothing is hierarchically
located under a folder, but you do need to specify the multi=true parameter because you are deleting
all folders that exist on the target host.

When using cURL to DELETE data from a host using the /config API, you must use the following
cURL option:

-X Identifies the request method to use (DELETE) when communicating with the target HTTP server

The cURL command's -s options is optional, causing the cURL command to run in silent mode, in which
it does not display progress information or error messages.

3.3.3.1. Getting�DELETE�Status�Information
The JSON returned by GET calls to the /config API for companies, organizations, and folders include
a status field that provides high-level status information about the object that you are enquiring about.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

34 Proprietary and Confidential © 2019, Voci Technologies, Inc.

This is useful for long-running operations such as a DELETE operation. The value of the status field
will be one of the following:

OK No operations are in progress regarding the queried object

deleting The queried object is in the process of being deleted

deleting (XX%) In long-running deletion tasks for companies and organizations, the queried
object is in the process of being deleted and shows the approximate percentage
(as an integer value) of the delete operation that has completed

Figure 3.23, “Folder Status When No Delete Operation is In Progress” shows sample JSON that is returned
by a call to the /config/COSHORT/ORGSHORT/FOLDER API when no delete operation is in progress.

{
 "servers": [
 "asrsrvr1"
],
 "nspeakers": 2,
 "audiotype": "Stereo",
 "created": "2017-09-05",
 "purifyaudio": false,
 "purifytext": true,
 "modelchan0": "eng1:callcenter",
 "status": "OK",
 "modelchan1": "spa1:callcenter",
 "agentchan": 0,
 "mode": "active",
 "callback": {},
 "apps": [],
 "asroptions": {},
 "custom_meta": []
}

Figure 3.23. Folder Status When No Delete Operation is In Progress

Figure 3.24, “Folder Status When a Delete Operation is In Progress” shows sample JSON that is returned
by a call to the /config/COSHORT/ORGSHORT/FOLDER API when a delete operation is in progress.

{
 "servers": [
 "asrsrvr1"
],
 "nspeakers": 2,
 "audiotype": "Stereo",
 "created": "2017-09-05",
 "purifyaudio": false,
 "purifytext": true,
 "modelchan0": "eng1:callcenter",
 "status": "deleting",
 "modelchan1": "spa1:callcenter",
 "agentchan": 0,
 "mode": "active",
 "callback": {},
 "apps": [],
 "asroptions": {},
 "custom_meta": []
}

Figure 3.24. Folder Status When a Delete Operation is In Progress

After using the /config API's DELETE method, it is a good idea to call the /config API's GET verb
for the object that you requested deletion of. If the GET call returns JSON like that shown in Figure 3.24, the
folder is in the process of being deleted. If the call returns "Folder not found: FOLDERNAME", you
can be sure that the DELETE operation has completed. When calling the /config API to get DELETE
status information, you will therefore need to test for both a successful return code (where JSON is returned,

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 35

and the status field in that JSON is one of OK, deleting or deleting(NN) and a return message
which indicates that the queried object does not exist, and has therefore already been deleted. The return
message deleting(NN) can be returned when deleting companies or organizations, where NN is an
integer value that gives an estimate of the percentage of the delete operation that has completed.

3.4. Using�the�/config�API�with�Python
Section 3.3, “Using the /config API with cURL” and subsequent sections explained how to access the V-
Spark API from the command-line by using the cURL command. This is a common way of integrating API
calls into scripts and V-Spark maintenance processes, but calling the API directly from application code is
equally common. The next few sections provide examples of using the GET, POST, and DELETE verbs
with the /config API from within applications that are written using the Python programming language.

3.4.1. GET'ing�Information�Using�Python�and�the�/config
API

Figure 3.25, “Sample Python code to query the /config API” shows example Python code that takes
multiple parameters, and which enables you to retrieve information from a specified portion of the /
config API. This code takes the following parameters, in order:

HOST The hostname of IP address of the host that is running the V-Spark installation
which you want to query

ROOT_TOKEN The root token for the V-Spark installation that you are querying. The root token
for a V-Spark installation is stored in the file /opt/voci/state/vspark/
apitoken

API-TO-CALL You can use the example code to call any aspect of the /config API.
For example, you could pass /config, /config/orgs, and so on, or
explicitly request information about a specific company by passing /config/
DocTestCo (if DocTestCo is a valid company on the V-Spark installation
that you are querying).

HTTP_CODE_TARGET This is the HTTP return code that you expect to receive, and is only used in
this example so that you can display its value and visually compare it against
what you received from the actual API call to determine if your API call worked
correctly. You could expand your code to react appropriately if you received an
HTTP return code other than this one.

OUTPOST_FILE The file to which you want to write the JSON that you retrieved. The sample
code also pretty-prints this JSON, to make it easier to read.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

36 Proprietary and Confidential © 2019, Voci Technologies, Inc.

#!/usr/bin/env python

Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.

import sys
import json
import urllib2
import requests

default values
#
PROTOCOL = "http://"
PORT = "3000"

 if (len(sys.argv) != 6):
 print " Usage:", sys.argv[0], "HOST API_ROOT_TOKEN API_TO_CALL HTTP_CODE_TARGET OUTPOST_FILE"
 sys.exit(-1)
 else:
 # get cmdline params
 HOST, ROOT_TOKEN, API_TO_CALL, HTTP_CODE_TARGET, OUTPOST_FILE = sys.argv[1:]

Define the URL in a single variable for JSON load
url = "%s%s:%s%s?token=%s" % (PROTOCOL, HOST, PORT, API_TO_CALL, API_ROOT_TOKEN)

print "Checking " + API_TO_CALL + " on " + HOST + " and writing output to " + OUTPOST_FILE
print " URL is " + url

response = requests.get(url)
print ' SUMMARY (GET): ' + API_TO_CALL, ': HTTP message: ', \
 response.reason, ' HTTP return code: ', \
 str(response.status_code), ' expected ' + HTTP_CODE_TARGET

target = open(OUTPOST_FILE, 'w')

To get output data, return a python object and dump it to a string
that is a JSON representation of that object

data = json.load(urllib2.urlopen(url))

pretty-print the result
target.write(json.dumps(data, indent=4, sort_keys=True))

target.close()

Figure 3.25. Sample Python code to query the /config API

The sample code shown in Figure 3.25, “Sample Python code to query the /config API” is one of the
applications that are used to help test the /config API that is discussed in this section. Therefore, its
focus is on providing simple, linear code that shows how to get data from a specified host. The major steps
in this sample Python application are the following:

Check if the right number of command-line arguments have been provided, assign them to
appropriate variables if so and identifying the expected arguments if not.
Assemble the URL that you will use to call the specified API
Make the get request to the V-Spark installation on the host that you specified on the command-line
so that you can get the HTTP response and return code to display in an output message
Issue the get call in another fashion so that you can retrieve the JSON that it returns and pretty-print
that to a file.

3.4.2. Integrating�Multiple�GET�Results�Using�Python
To read data from a V-Spark installation, you can use the root token, but that's analogous to running every
Linux command as the superuser - it is cleaner to use the authorization token that is associated with each
company.

Figure 3.26, “Sample Python code to combine data read from the /config API” provides example code
that enables you to explore a V-Spark installation by using the top-level JSON configuration data for a V-

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 37

Spark installation along with the JSON that describes all of the folders in the V-Spark installation. You
could use the sample code shown in Figure 3.25, “Sample Python code to query the /config API” to extract
the JSON information that you need by executing the following two commands, assuming that the code
shown in Figure 3.25, “Sample Python code to query the /config API” has been saved to the file config-
get-info.py.

Once you have retrieved the JSON for the companies and folders that have been defined in the V-
Spark installation on the host example.company.com, you can combine these two aspects of JSON
configuration information about your V-Spark installation to explore that installation. Sample Python code
that enables you to do this is shown in Figure 3.26, “Sample Python code to combine data read from the /
config API”. This example merits a walkthrough of the code.

#!/usr/bin/env python
#
Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.
#
Application that reads company and folder information about a
product installation on a specified host, then uses the company's
short name to link the two. The application then prints a
hierarchical listing of available companies (each with its
associated authorization token), the organizations within those
companies, and the folders within those organizations.
#

import requests

def usage(argv):
 print "Usage:", argv[0], "<sparkhost:port> <root token>"
 exit(1)

def main(argv):
 if len(argv) != 3: usage(argv)
 host, token = argv[1:]
 tokens = gettokens(host,token)
 folderinfo = getfolderinfo(host,token)
 printfolders(host, folderinfo, tokens)

def gettokens(host, token):
 url = "http://%s/config?token=%s" % (host,token)
 cfg = requests.get(url).json()
 return dict([(comp,d['uuid']) for comp,d in cfg.iteritems()])

def getfolderinfo(host, token):
 url = "http://%s/config/folders?token=%s" % (host,token)
 return requests.get(url).json()

def printfolders(host, folder_info, tokens):

 for comp, comp_data in folder_info.iteritems():
 print comp+" (Token: "+tokens[comp]+")"

 for org, org_data in comp_data.iteritems():
 print "\t", org

 for folder, folder_data in org_data.iteritems():
 print "\t\t", folder

if __name__ == '__main__':
 from sys import argv
 main(argv)

Figure 3.26. Sample Python code to combine data read from the /config API

The sample code shown in Figure 3.26, “Sample Python code to combine data read from the /config API”
does the following:

The main function provides a traditional main routine that shows the order in which functions are
called in the application

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

38 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Uses the /config API to retrieve the top-level configuration information from the host that was
specified on the command-line , and returns a dictionary that contains only the company names and
their associated authorization tokens (stored in the uuid field of the per-company information).
Uses the /config/folders API to retrieve the folder-level configuration information from the
host that was specified on the command-line
Initiates the primary loop for the application, which is controlled by the companies that were found in
the information that was retrieved from the host specified on the command-line. Each company has
an associated authorization token (originally stored in the uuid name/value pair), which is the other
field for each company entry in the dictionary that was constructed in the gettokens()function.
The short name for each company is the data item in the company JSON that provides the linkage
between the data from the company and folder sources. This loop prints out the name of each company
that was found on the remote V-Spark installation and its associated authorization token.
Initiates a second loop for the application, which is controlled by the organizations that were retrieved
in the company information which was retrieved from the host specified on the command-line. This
loop prints the name of each organization that was found under the current company.
Initiates the final internal loop that iterates through all of the folders that are associated with each
organization that was retrieved in the company information which was retrieved from the host
specified on the command-line. This loop prints the name of each folder found under the current
organization.

After the final print entry in the code shown in Figure 3.26, “Sample Python code to combine data read
from the /config API”, you could expand this sample application for testing purposes by adding other API
calls at this point that would require company, authorization token, organization, and folder information.

The sample application shown in Figure 3.26, “Sample Python code to combine data read from the /config
API” is provided as an example that shows how you can programmatically integrate the JSON output
that you receive regarding different aspects of a V-Spark installation. As noted in the comments at the
beginning of the source code, this code is only provided as an example.

3.4.3. POST'ing�Information�Using�Python�and�the�/config
API

Use the /config API to update the configuration of a V-Spark installation.

Note

The /config/system API does not accept POST requests. At this time, the /config/
system API only returns system read only settings and read only settings must be updated
directly using the /config/system/readonly API.

This section provides sample Python code that shows how to put information from a sample JSON file to
the V-Spark installation on the host that you provide as a command-line argument. You can prepare this
JSON file manually, or you can use Python code like that shown in Figure 3.25, “Sample Python code to
query the /config API” to retrieve V-Spark configuration from a V-Spark installation on another host.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 39

#!/usr/bin/env python

Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.

import sys
import json
import requests

default values
PROTOCOL = "http://"
PORT = "3000"

if (len(sys.argv) != 6):
 print " Usage:", sys.argv[0], "HOST ROOT_TOKEN API_TO_CALL TARGET_HTTP_CODE INPOST_JSON_FILE"
 sys.exit(-1)
else:
 HOST, ROOT_TOKEN, API_TO_CALL, TARGET_HTTP_CODE, INPOST_JSON_FILE = sys.argv[1:]

Define the URL in a single variable for JSON load
url = "%s%s:%s%s&token=%s" % (PROTOCOL, HOST, PORT, API_TO_CALL, ROOT_TOKEN)

print "Checking " + API_TO_CALL + ", POST'ing input from " + INPOST_JSON_FILE
print " Whole URL: "+url

with open(INPOST_JSON_FILE) as json_file:
 json_data = json.load(json_file)

response = requests.put(url, data=json.dumps(json_data))

print ' SUMMARY (POST): ' + API_TO_CALL, ': HTTP message: ', response.reason, ' HTTP return code: ',
 str(response.status_code), ' expected ' + TARGET_HTTP_CODE

Figure 3.27. Sample Python code to write (POST) data with the /config API

The sample code shown in Figure 3.27, “Sample Python code to write (POST) data with the /config API”
is one of the applications that are used to help test the /config API that is discussed in this section.
Therefore, its focus is on providing simple, linear code that shows how to put data to a specified host. The
major steps in this sample Python application are the following:

Check if the right number of command-line arguments have been provided, assign them to
appropriate variables if so and identifying the expected arguments if not.
Assemble the URL that you will use to call the specified API
Open the JSON file that was specified on the command-line (and which contains that data that you
want to POST to the specified host). Read that JSON into a JSON object.
Call the specified URL, passing the JSON object as a parameter. Next, print a summary that identifies
the API that the program called, the HTTP message and return cod that the call returned, and prints
the expected return code that you provided as a parameter.

Some examples of calling this Python script from the command-line are the following:

• config-put-tests.py example.company.com 123456789012345678901234567890123 /config/orgs 200 \
 config-orgs.json

Enables you to write the organization-level JSON configuration information stored in the file config-
org.json to the V-Spark installation of the host example.company.com using the root token
123456789012345678901234567890123, and also says that you expect that command to return
success (HTTP error code 200).

• config-put-tests.py example.company.com 123456789012345678901234567890123 /config 200 \
 config.json

Enables you to write the company-level (top-level) JSON configuration information stored in the file
config.json to the V-Spark installation of the host example.company.com using the root token

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

40 Proprietary and Confidential © 2019, Voci Technologies, Inc.

123456789012345678901234567890123, and also says that you expect that command to return
success's (HTTP error code 200).

3.4.4. DELETE'ing�Information�Using�Python�and�the�/
config�API

Use the /config API to delete information about companies, organizations, folders, applications, and
users.

This section provides sample Python code that shows how to delete all configuration information at a
certain level of the product or a specific company, organization, folder, or application by specifying the
full hierarchy of that object as part of the API that you specify on the command-line for this application.
You do not need to provide a JSON file as one of the arguments to the delete operation - only the full path
to the object that you want to delete is required.

#!/usr/bin/env python

Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.

import sys
import requests

default values
PROTOCOL = "http://"
PORT = "3000"

if (len(sys.argv) != 6):
 print " Usage:", sys.argv[0], "HOST ROOT_TOKEN API_TO_CALL TARGET_HTTP_CODE EXTRA_PARAMS"
 sys.exit(-1)
else:
 # get cmdline params
 HOST, ROOT_TOKEN, API_TO_CALL, TARGET_HTTP_CODE, EXTRA_PARAMS = sys.argv[1:]

Define the URL in a single variable for JSON load
url = "%s%s:%s%s?token=%s%s" % (PROTOCOL, HOST, PORT, API_TO_CALL, ROOT_TOKEN, EXTRA_PARAMS)

print "Deleting based on " + API_TO_CALL
print " URL is ", url

response = requests.delete(url)
print ' SUMMARY (DELETE): ' + API_TO_CALL, ': HTTP message: ', response.reason, ' HTTP return code: ',
 str(response.status_code), ' expected ' + TARGET_HTTP_CODE

Figure 3.28. Sample Python code to delete data using the /config API

The sample code shown in Figure 3.28, “Sample Python code to delete data using the /config API” is one
of the applications that are used to help test the /config API that is discussed in this section. Therefore,
its focus is on providing simple, linear code that shows how to delete data to a specified host. The major
steps in this sample Python application are the following:

Check if the right number of command-line arguments have been provided, assign them to
appropriate variables if so and identifying the expected arguments if not.
Assemble the URL that you will use to call the specified API. Remember that you have to pass the
&multi=true parameter if you are trying to delete an object that contains multiple other objects,
the &tree=true option if you are trying to delete an object that has one or more descendants, or
both parameters if both of these are true.
Call the specified URL, and print a summary that identifies the API that the program called, the
HTTP message and return code that the call returned, and prints the expected return code that you
provided as a parameter.

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 41

Some examples of calling this Python script from the command-line are the following:

• config-delete-tests.py example.company.com 123456789012345678901234567890123 /config/orgs 200 \
 "&multi=true&tree=true"

Enables you to delete the organizations from the V-Spark installation of the host
example.company.com using the root token 123456789012345678901234567890123,
and also says that you expect that command to return success (HTTP error code 200). (The extra
parameters are passed correctly to the Python script, which just appends them to the ?token parameter.)

• config-put-tests.py example.company.com 123456789012345678901234567890123 \
 /config/DocTestCo/DocTestCo-DocTesting/Test01 200 ""

Enables you to delete the folder Test01 from the docTestCo-DocTesting organization under
the DocTestCo from the V-Spark installation of the host example.company.com using the root
token 123456789012345678901234567890123. The command also says that you expect that
command to return success (HTTP error code 200).

3.5. Listing�Configuration�Information
The /list API provides high-level configuration information about a V-Spark installation. The /list
API provides the names of items within the configuration of a V-Spark installation and does not include
the detailed configuration information that the /config API's GET verb provides. The /list API does
not support any REST verb other than GET.

3.5.1. Reference�for�the�/list�API
The /list API enables you to read (GET) the names used in the configuration of a V-Spark installation.

Synopsis

 /list
 /list/users
 /list/orgs
 /list/folders
 /list/apps
 /list/CO_SHORT/users
 /list/CO_SHORT/orgs || /list/CO_SHORT
 /list/CO_SHORT/folders
 /list/CO_SHORT/apps
 /list/CO_SHORT/ORG_SHORT/folders || /list/CO_SHORT/ORG_SHORT
 /list/CO_SHORT/ORG_SHORT/apps

As shown in the synopsis, calls to the V-Spark /list API can include optional entries that enable you
to specify the short name of a company (CO_SHORT) and the short name of an organization within a
company (ORG_SHORT) to limit the amount of information that you are retrieving, updating, or adding.
See Section 3.1.1.1, “Refining by Companies, Organizations, Folders, and Apps” for more information.

Calls to the V-Spark API without specific company or organization values return all of the name
information for the part of the API that you are calling. In other words, a call to /list/DocTestCo
only returns information about the organizations under the company whose short name is "DocTestCo".
A call to /list returns information about all of the companies that have been defined in the V-Spark
installation that you are querying.

Description

The preceding calls can GET the following types of name-level information about a V-Spark installation:

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

42 Proprietary and Confidential © 2019, Voci Technologies, Inc.

/list Returns information about companies in a V-Spark installation

/list/users Returns information about any users that have been defined in a V-Spark installation

/list/orgs Returns information about the organizations that have been defined under companies
in a V-Spark installation

/list/folders Returns information about the folders that have been defined under organizations
in a V-Spark installation

/list/apps Returns information about any apps that have been defined in a V-Spark installation

See Section 1.1, “Overview of the V-Spark Hierarchy” for information about how a V-Spark installation
is hierarchically organized.

Options

(None)

Content Types

• GET method returns JSON formatted data with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

3.5.1.1. Sample�JSON�Output�from�the�/list�API
The /list API returns a high-level JSON representation of the V-Spark installation that is being queried.
The following sections describe the JSON output from the /list API for each aspect of a V-Spark
installation:

• Section 3.5.1.1.1, “Sample /list JSON Output for Companies”

• Section 3.5.1.1.2, “Sample /list/orgs JSON Output for a Company”

• Section 3.5.1.1.3, “Sample /list/folders JSON Output for a Company”

• Section 3.5.1.1.4, “Sample /list/apps JSON Output”

• Section 3.5.1.1.5, “Sample /list/users JSON Output for an Installation”

3.5.1.1.1. Sample�/list�JSON�Output�for�Companies
The following is an example of output produced by the /list API for the companies in a V-Spark
installation:

[
 "TestCompany",
 "Testing",
 "DocTestCo",
 "WebAPITest",
 "Limitedhours",
 "CNCO",
 "JWebAPITest"
]

The /list API enables code to quickly extract a high-level view of the companies in a V-Spark
installation, but does not itself provide enough information for you to drill down into that installation.

3.5.1.1.2. Sample�/list/orgs�JSON�Output�for�a�Company
The following is sample output for a single company from the /list/orgs API:

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 43

"DocTestCo": [
 "DocTestCo-DocTesting"
],...

In the same way that you can use the /config/CO_SHORT/orgs API to retrieve information about the
organizations within a company in a V-Spark installation, you can use the /list/CO_SHORT/orgs
API to retrieve the names of the organizations within a company, as shown in the following example,
which was produced by calling the /list/DocTestCo/orgs URL, and lists the organizations that
have been defined within a sample company known as DocTestCo:

[
 "DocTestCo-DocTesting"
]

Tip

This example was produced by passing /list/DocTestCo as the API-TO-CALL
parameter to the sample code shown in Figure 3.25, “Sample Python code to query the /
config API”. Though the discussion of that example in Section 3.4.1, “GET'ing Information
Using Python and the /config API” was used to show calling the /config API, it can just
as easily be used to call the /list API.

Important

The /list/CO_SHORT and /list/CO_SHORT/orgs API calls produce identical
output. This is by design, because the only editable V-Spark items that are directly located
under a specific company are the organizations that have been defined within that company.

3.5.1.1.3. Sample�/list/folders�JSON�Output�for�a�Company

The following is sample output for a single folder in a sample V-Spark installation, produced as part of
a call to the /list/folders API:

"DocTestCo": {
 "DocTestCo-DocTesting": [
 "Test01"
]
},...

In the same way that you can use the /config/CO_SHORT/ORG_SHORT/folders API to retrieve
detailed information about the folders that have been defined within an organization, you can use the
/list/CO_SHORT/ORG_SHORT/folders API to retrieve the names of such folders, as shown
in the following example, which was produced by calling the /list/DocTestCo/DocTestCo-
DocTesting/folders URL, and lists the folders that have been defined for the DocTestCo-
DocTesting organization within a sample company known as DocTestCo:

[
 "Test01"
]

Note

In this case, only one folder has been defined within the DocTestCo-DocTesting
organization. If multiple folders had been defined within that organization, all of their names
would be displayed by the output of this command.

Tip

This example was produced by passing /list/DocTestCo/DocTestCo-Doc-
Testing as the API-TO-CALL parameter to the sample code shown in Figure 3.25,
“Sample Python code to query the /config API”. Though the discussion of that example in

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

44 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Section 3.4.1, “GET'ing Information Using Python and the /config API” was used to show
calling portions of the /config API, it can just as easily be used to call portions of the /
list API.

3.5.1.1.4. Sample�/list/apps�JSON�Output
The following is sample output for the applications that are associated with companies from the output of
the /list/apps API for a V-Spark installation:

"DocTestCo": {
 "DocTestCo-DocTesting": [
 "Testing CallbackTest",
 "Manager App",
 "Admin App"
]
},...

In the same way that you can use the /config/CO_SHORT/apps API to retrieve information about the
applications that have been defined within a company in a V-Spark installation, you can use the /list/
CO_SHORT/apps API to retrieve the names of the applications within a a company, as shown in the
following example, which was produced by calling the /list/DocTestCo/apps URL, and lists the
applications that have been defined within a sample company known as DocTestCo:

[
 "Testing CallbackTest",
 "Manager App",
 "Admin App"
]

3.5.1.1.5. Sample�/list/users�JSON�Output�for�an�Installation
The following is sample output for the users in a V-Spark installation from the /list/users API:

"DocTestCo": [
 "joe.user",
 "bill.generic"
],

To extract this same information in a company-specific way, you could call the /list/CO_SHORT/
users API to extract information about the users that have been defined within the CO_SHORT
company. For example, calling the /list/DocTestCo/users API directly in the same sample V-
Spark installation would produce the following output:

[
 "joe.user",
 "bill.generic"
]

3.5.1.2. Using�the�/list�API�with�cURL
The cURL utility makes it easy to test using the V-Spark API by providing a command-line mechanism
for invoking APIs such as the /list API. The next few sections provide examples of using the GET
verbs with the /list API from the command-line via the cURL command.

The cURL utility is freely available for operating systems including Linux, Windows, and Mac OS
X [https://curl.haxx.se/download.html]. The command-line command for invoking the cURL utility is
curl on Linux or Apple Mac OS X systems. The executable command for invoking the cURL utility is
curl.exe on Microsoft Windows systems.

Note

Escaped newlines (that is, lines in cURL commands or example output that end with a
backslash) are added for readability. They must not be present in cURL commands, and are
also not present in the output of those commands.

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Using the V-Spark 3.5.0 API Chapter 3. Retrieving and Updating V-Spark Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 45

Example commands are shown in normal monospaced text. Example output from each
command is shown in bold monospaced text.

Tip

See Section 1.3.2, “Tips for Debugging and Managing cURL Calls” for suggestions about
how to debug and manage cURL calls.

This section discusses how to use the /list API to retrieve high-level configuration information from
a specified V-Spark installation. A sample cURL command to retrieve information about all of the
organizations in a V-Spark installation is the following:

curl -s $PROTOCOL://$HOST:$PORT/list/orgs?token=TOKEN

The variables in this command are the following:

PROTOCOL The protocol that your V-Spark installation uses to communicate over the network, one of
http or https. V-Spark installation use the http protocol by default.

HOST The host on which your V-Spark installation is running, specified by host name or IPv4
IP address.

PORT The network port that the V-Spark installation is listening on. The default is port 3000,
which must still be specified in V-Spark REST API calls.

TOKEN An authorization token that enables calls to the /list API to access all data in a V-Spark
installation. If you are using cURL to access the API for information within a specific
company, you can provide that company's authorization token to get the information that
you need. If you are requesting higher-level information, you can always use the V-Spark
installation's root token to obtain the information that you are requesting. The root token
for a default V-Spark installation is located in the file /opt/voci/state/vspark/
apitoken.

Note that no REST verb has been specified in the preceding cURL command. That is because the cURL
command defaults to performing a GET operation when no REST verb is specified, and the /list API
only supports the GET verb.

As an example, the cURL command to use the HTTP protocol to retrieve configuration information for
the organizations that have been defined in a V-Spark installation on the host example.company.com
is the following:

curl -s http://example.company.com/list/orgs?token=123456789012345678901234567890123

If you are using the root token to enable access to the V-Spark configuration information, it is a 32-character
string that is passed as an option using the token parameter.

3.5.1.3. Using�the�/list�API�with�Python
The sample test script that was provided in Figure 3.25, “Sample Python code to query the /config API” was
used to test the /config API. However, it can just as easily be used to query a V-Spark installation and
retrieve name-level information by specifying an API URL that begins with /list as the third parameter
to the sample code, API-TO-CALL. Figure 3.29, “Invoking the code in Figure 3.25 to use the /list API”
shows an example of invoking the code shown in Figure 3.25 to use it to explore the /list API, assuming
that you have saved the code in that figure to a file named get-tests.py in the current directory and
made that file executable.

Chapter 3. Retrieving and Updating V-Spark Information Using the V-Spark 3.5.0 API

46 Proprietary and Confidential © 2019, Voci Technologies, Inc.

./get-tests.py HOST_NAME ROOT_TOKEN /list 200 config.json

./get-tests.py HOST_NAME ROOT_TOKEN /list/users 200 config-users.json

./get-tests.py HOST_NAME ROOT_TOKEN /list/orgs 200 config-orgs.json

./get-tests.py HOST_NAME ROOT_TOKEN /list/folders 200 config-folders.json

./get-tests.py HOST_NAME ROOT_TOKEN /list/apps 200 config-apps.json

Figure 3.29. Invoking the code in Figure 3.25 to use the /list API

To execute this snippet as directed, you would have to replace HOST_NAME with the name of the host
on which your V-Spark installation is running, and replace ROOT_TOKEN with the root token for your
V-Spark installation.

The examples in this section (which call the code in Figure 3.25) are fairly simple because the /list API
only supports the GET HTTP verb, and only returns name-level information.

Using the V-Spark 3.5.0 API Chapter 4. Submitting audio and metadata for processing

© 2019, Voci Technologies, Inc. Proprietary and Confidential 47

Chapter�4. Submitting�audio�and
metadata�for�processing

V-Spark uses the HTTP POST method to submit audio and optional metadata files for processing. Please
refer to the "V-Spark 3.5.0 Management Guide" for a discussion of supported audio formats and metadata
formatting details.

When using the /transcribe API to submit files for transcription, single audio files and JSON
transcripts can be submitted individually. Files submitted individually will not be associated with each
other. Multiple files must be encapsulated into a single "zip" file. These zip files can contain both audio
data and metadata - any metadata that you provide must be formatted as described in the "Metadata
Management" section of "V-Spark 3.5.0 Management Guide". Audio files and metadata files submitted as
parts of a "zip" file will remain associated with each other as parts of a single submission.

Tip

If you want to directly submit audio files in various audio formats, V-Spark's GUI enables
you to submit files to a specific folder by using the Settings menu's Folders command to
display your folders and clicking the Upload audio button to the right of a folder's name.
See the "V-Spark 3.5.0 Management Guide" for more information.

Note

The maximum size of a file that can be submitted for transcription using the /transcribe
API is 250 MB.

When using the /transcribe API to submit zip files for transcription of the audio files that they contain,
the POST must be encoded as a multipart/form-data request, with the zip file name provided in a file field
and a V-Spark authorization token provided in the token field. You can use either the root token for your V-
Spark installation or the token for the company that is associated with the organization and folder to which
you are submitting your transcription request. See Section 1.2, “V-Spark API Permission Requirements”
for information about locating these tokens and the rights that these tokens give you.

The following is an example of calling the /transcribe API method using the cURL command-line
utility:

curl -F token=0123456789abcde0123456789abcde01 \
 -F "file=@/path/to/audio_and_meta.zip;type=application/zip" \
 -X POST https://hostname/transcribe/org_shortname/folder_name

The cURL utility is freely available for operating systems including Linux, Windows, and Mac OS X
[https://curl.haxx.se/download.html].

Note

Items shown as replaceable in the sample cURL command are example settings only
and must be replaced with real values that are appropriate for your environment.

In the example command, note that org_shortname refers to the Short Name assigned to the target
Organization, which can be found on the V-Spark Settings page in the Organization section of V-Spark
- see Figure 4.1, “Location of the V-Spark Organization Short Name”. The folder refers to the folder
for the organization into which you want to upload the audio that is contained in the zip file that you are
uploading.

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Chapter 4. Submitting audio and metadata for processing Using the V-Spark 3.5.0 API

48 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Figure 4.1. Location of the V-Spark Organization Short Name

The cURL command exits after transmission of the zip file to the V-Spark instance has completed. The
POST returns a Universally Unique ID (UUID) that identifies the transcription request. All transcripts
produced as a result of the request will include a "requestid" field with its value set to this UUID. The
requestid enables you to correlate specific transcriptions with specific transcription requests.

Once the audio has been transcribed, the transcripts (along with optional metadata) are loaded into V-
Spark. Please refer to the "V-Spark 3.5.0 Review and Analysis Guide" for details regarding browsing,
searching, and analyzing your calls and metadata within V-Spark. All parameters that control transcription
options are specified in the V-Spark Folder definition. These include language models used to decode
each audio channel, number of speakers, number of audio channels (i.e. mono or stereo), etc. It is therefore
unnecessary to provide these parameters when POSTing zip files to V-Spark. Please refer to the "V-Spark
3.5.0 Management Guide" for more details.

4.1. Reference�for�the�/transcribe�API
The /transcribe API enables you to submit files for transcription.

Synopsis

Note

The /transcribe API can not be called as a single URL from the command-line due to its
combination of resource and query parameters. See Section 4.1.1, “Examples of calling the /
transcribe API” for examples of using the curl command to test this API from the command-
line by using special curl options to pass form and multi-part data.

Variables used in a call to the /transcribe API are the following:

SERVER The name or IP address of the computer system on which V-Spark is installed

ORG_SHORT The short name of the organization that you are using. Finding that information is shown
in Figure 4.1, “Location of the V-Spark Organization Short Name”.

FOLDER The name of the V-Spark Folder to which you want to upload the zip file containing your
audio file(s).

Description

The /transcribe method takes the following options to provide authentication information and to
identify the zip file that you are attempting to upload:

token The V-Spark authorization token that you are using to establish permission to submit files. The
token used to authorize transcription requests can either be the root token for your V-Spark

Using the V-Spark 3.5.0 API Chapter 4. Submitting audio and metadata for processing

© 2019, Voci Technologies, Inc. Proprietary and Confidential 49

installation, or the company authorization token. Refer to Figure 1.1, “Location of a Company
Authorization Token” for information about locating a company authorization token.

file The name of the file or zip file containing the information that you want to be transcribed and/
or analyzed

Upon success, the /transcribe method returns a Universally Unique ID (UUID) that identifies the
transcription request. All transcripts produced as a result of the request will include a "requestid" field
with its value set to this UUID.

Content Types

• POST method expects to receive options with the "multipart/form-data" MIME type, and returns data
with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

4.1.1. Examples�of�calling�the�/transcribe�API
The following example shows calling the /transcribe method using the cURL command-line utility.
Sample output is also provided, but depends on the host on which the API is running, the organization and
folder that you are uploading to, and the authorization token that you are using. The cURL utility is freely
available for multiple operating systems including Linux, Windows, and Mac OS X [https://curl.haxx.se/
download.html].

Note

Escaped newlines (that is, lines in the cURL command or the example output that end with a
backslash) are added for readability. They must not be present in cURL commands, and are
also not present in the output of those commands.

Example commands are shown in normal monospaced text. Example output from each
command is shown in bold monospaced text.

The following is a cURL example that shows calling the /transcribe API:

curl -F token=0123456789abcde0123456789abcde01 \
 -F 'file=@../SAMPLES/CallTEST.zip;type=application/zip' \
 -X POST http://example.company.com/transcribe/Test-Testing/Test01

9700fc31-f608-48b5-aaaf-bd264e811d9a

4.2. Using�the�/transcribe�API�with�AWS�S3
The Amazon Web Service (AWS) Simple Storage Service (S3) is a common location for archiving audio
files and metadata together in zip files. If you already have such files stored in S3, you can use the /
transcribe API's support for S3 to process them from that location, which can save upload time
because V-Spark typically must upload your files to S3 for processing. In order to use the /transcribe
API with S3 from the command-line, you must pass your AWS_ACCESS_KEY (referred to in the /
transcribe API as your aws_id) and AWS_SECRET_KEY (referred to as your aws_secret) by
using the curl command's support for filling in forms.

The following is the general format of a cURL command that calls the /transcribe API to transcribe
a file or directory that is stored in S3:

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Chapter 4. Submitting audio and metadata for processing Using the V-Spark 3.5.0 API

50 Proprietary and Confidential © 2019, Voci Technologies, Inc.

curl -F token=AUTH_TOKEN \
 -F aws_id=AWS_ACCESS_KEY \
 -F aws_secret=AWS_SECRET_KEY \
 -F s3key=s3://BUCKET/path/to/file/or/directory \
 -F region=S3_REGION \
 -X POST http://SERVER/transcribe/ORG_SHORT/FOLDER

The user-specific fields that you need to provide are the following:

AUTH_TOKEN The authorization token that you are using to retrieve information.
Locating your authorization token is described in Chapter 4,
Submitting audio and metadata for processing. Locating an
authorization token for the company associated with the folder
that you are uploading to is shown in Figure 1.1, “Location of a
Company Authorization Token”.

AWS_ACCESS_KEY The Amazon key for the bucket in which the file that you want to
transcribe is stored

AWS_SECRET_KEY The secret Amazon key for the bucket in which the file that you
want to transcribe is stored

BUCKET The Amazon S3 bucket in which the file that you want to transcribe
is stored

path/to/file/or/
directory

The path to the file that you want to process, a zip file that contains
the audio file that you want to process (and an optional metadata
file), or to a directory that contains a hierarchy of files that you
want to process. If you specify a directory, all of the files that are
located under that directory will be queued for transcription. Files
that are submitted for processing but which are not in a format that
is supported by V-Spark will not be processed and will be listed in
the V-Spark folder's process log as being UNSUPPORTED.

S3_REGION You must specify the Amazon S3 region of the S3 bucket. The
region option on the request specifies which regional endpoint to
use for the request.

This option reduces request latency and is required.

SERVER The name or IP address of the computer system on which V-Spark
is installed

ORG_SHORT The short name of the organization that you are using. Finding
that information is shown in Figure 4.1, “Location of the V-Spark
Organization Short Name”.

FOLDER The V-Spark folder in which you want the transcript and audio
output that is produced by V-Spark to be stored.

The following is a specific example of calling the /transcribe API to transcribe a zip file that is stored
in S3:

curl -F token=0123456789abcde0123456789abcde01 \
 -F aws_id=012345678901234567890 \
 -F aws_secret=01234567890123456789012345678901234567890 \
 -F s3key=s3://example.company.com/documentation-TEST.zip \
 -F region=us-east-1 \
 -X POST http://example.company.com/transcribe/Test-Testing/Test01

Using the V-Spark 3.5.0 API Chapter 4. Submitting audio and metadata for processing

© 2019, Voci Technologies, Inc. Proprietary and Confidential 51

9700fc31-f608-48b5-aaaf-bd264e811d9a

This example transcribes the audio in the zip file named documentation-TEST.zip in the bucket
example.company.com and puts the results of that transcription in the Test01 folder of the
organization Test-Testing. As with other calls to the /transcribe API, it returns the request ID
for your transcription request, which you can subsequently use with the /request API, as discussed in
Section 5.2, “Reference for the /request API”.

By default, any zip file in S3 that you have identified for transcription using the /transcribe API
remains stored on S3 after its contents have been transcribed. Keeping such files in S3 after their content
has been transcribed may not be necessary, so the /transcribe API includes a "delete=true"
option that you can pass to delete a file after its content has been transcribed. In an application, you would
pass this as an additional parameter to the /transcribe API call. In a curl command, you would add
the -F delete=true option to your command-line.

Chapter 4. Submitting audio and metadata for processing Using the V-Spark 3.5.0 API

52 Proprietary and Confidential

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 53

Chapter�5. Receiving�transcripts�and
status�information

You can receive JSON and text transcripts and audio files directly within V-Spark or by using the /
request API call to retrieve them manually. V-Spark uses the HTTP POST method to provide transcripts
to a callback server. A callback server is a client-side HTTP server that is used to receive information from
a known source and process it appropriately. In most cases, using callbacks rather than polling the results
of submitting and analyzing audio files for transcription is simpler and more efficient.

Callback URLs are defined as part of V-Spark folder configuration. In most cases, you will not need to
customize the callback URL that is configured when V-Spark folders are created. You will only want to
do so if you want to integrate V-Spark with external applications (Filesystem, HTTP/S, SFTP), external
storage locations for audio data (S3), and so on. Using a callback server with V-Spark is described in
Section 5.1, “Using Callbacks in V-Spark”, and is the preferred way of interacting with the V-Spark API.

For situations where a callback server cannot be used and you want to call the V-Spark API directly,
Section 5.2, “Reference for the /request API” provides reference material and examples of using the /
request API. It is not necessary to specify a callback URL as part of using the /request API because
results are returned directly by the API call, but you must wait until a call to the /request method shows
that processing has completed until you can retrieve complete results.

Note

Throughout the remainder of this section, HTTP refers to both of the HTTP and HTTPS
protocols.

5.1. Using�Callbacks�in�V-Spark
V-Spark uses the HTTP POST method to provide transcripts that have been enriched with analytical
annotations to a callback server. This callback server is a client-side HTTP server used to receive
information from a known source and process it appropriately.

In the simplest case, the callback server is configured to receive enriched transcript files from V-Spark
and save them to a local file system for later use. The URL that identifies this folder supports the HTTP,
HTTPS, Secure FTP, and Amazon Simple Storage Service protocols for on-premise deployments, as
well as being able to write to the filesystem of the server on which V-Spark is running. Cloud-based
deployments only support HTTP. Otherwise, the API is the same for both on-premise and cloud-based
deployment methods. See Section 5.1.1, “Configuring Callbacks in V-Spark” for detailed information
about how and where to specify these.

Note

If V-Spark cannot deliver results to a callback URL, it retries up to 100 times (by default)
or for up to 10,000 hours before giving up. To avoid overloading the server and network,
the callback worker waits for an increasing amount of time between retries. If the delivery
ultimately fails, V-Spark places the results that it was trying to deliver in the /var/lib/
vspark/error/callback/ directory.

The number of times that callbacks are retried is configurable. The location of the error
directory is also configurable.

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

54 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Using callbacks to deliver enriched transcript (and other) files to a callback server can occasionally result
in name collisions. A name collision results when files with the same name as the file that is currently
being processed already exist on the callback server. This can occur when, for example, two folders have
the same callback settings and files with the same name are uploaded to those folders for transcription. V-
Spark's callback mechanism automatically resolves name collisions. Files that are delivered via callbacks
automatically insert version number in file names to avoid name collisions. For example, if a file named
sample.json already exists in the location where a callback writes files, the JSON file that the
callback writes will be named sample.1.json. If both a file named sample.json and a file named
sample.1.json already exist in the location where callbacks write files, the JSON file that the callback
writes will be named sample.2.json. The number will increment until no file with a matching name
is found.

Important

Callbacks that use the File system, SFTP, and AWS S3 callback delivery methods
automatically avoid name collisions. Name collisions in callbacks that use the HTTP and
HTTPS callback delivery methods will over-write existing files.

By default, callbacks send transcription output from V-Spark's speech recognition engine to V-Spark on
the same host for analysis and presentation within the V-Spark graphical interface. The callback server
URL can be customized to enable feeding data from V-Spark to other applications for purposes such as
performing additional analytics, archival, and so on.

5.1.1. Configuring�Callbacks�in�V-Spark
The callback URL is specified as part of V-Spark folder configuration, which is accessed within V-Spark
as shown in Figure 5.1, “V-Spark Folder Settings”. To modify the settings for a folder:

1. Move your mouse over the Settings menu at the top left of the V-Spark screen. The Settings menu
displays.

2. Choose Folders from the Settings menu.

3. Display the folder whose setting you want to modify. Either select the Company and Organization
from the drop-down menus below the V-Spark logo, or use the Search folders search box to search
for and display information about a specified folder.

Figure 5.1. V-Spark Folder Settings

Note

Other aspects of working with V-Spark folders are discussed in the "V-Spark 3.5.0
Management Guide".

To edit the settings for an existing folder, click the edit icon. The dialog shown in Figure 5.2, “Editing
V-Spark Folder Settings” displays.

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 55

Figure 5.2. Editing V-Spark Folder Settings

Click Next to proceed to the part of this dialog in which you can specify the callback delivery method and
select the types of data that V-Spark sends to it. The dialog shown in Figure 5.3, “Further Customization
of V-Spark Folder Settings” displays.

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

56 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Figure 5.3. Further Customization of V-Spark Folder Settings

To display the portion of this dialog in which you can specify the parameters for and the location of the
callback server used by V-Spark and set related options, select the checkbox beside Configure callback
delivery method, and click Next. A dialog like the one shown in Figure 5.6, “Configuring an HTTP
Callback Server and related options ” displays.

Other options at the bottom of this dialog are:

Add/remove custom metadata
fields

Selecting this checkbox and clicking Next displays the dialog
shown in Figure 5.4, “Specifying custom metadata fields to include
in output”. This dialog enables you to identify custom metadata
fields that you want to include in transcriptions for this folder.

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 57

Figure 5.4. Specifying custom metadata fields to
include in output

Add/remove ASR options Selecting the checkbox beside this label and clicking Next displays
the dialog shown in Figure 5.5, “Specifying ASR options”. This
dialog enables you to identify Automatic Speech Recognition
(ASR) fields that you want to include in output for this folder.

Figure 5.5. Specifying ASR options

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

58 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Note

If you have not checked one or more of the checkboxes beside Configure callback delivery
method, Add/remove custom metadata fields, or Add/remove ASR options checkboxes
and selected Next, select Update to close this dialog and return to V-Spark.

By default, the callback configuration dialog shown in Figure 5.6, “Configuring an HTTP Callback Server
and related options ” displays the information that is required for a callback server which communicates
using the HTTP protocol, including an example that identifies the format of a standard URL.

Figure 5.6. Configuring an HTTP Callback Server and related options

The Callback Delivery Method area consists of a dropdown at left which identifies the supported
mechanisms for delivering callbacks, while the right portion of that area enables you to enter the path
that V-Spark must use to deliver transcription and optional information. Supported callback delivery
mechanisms are:

http:// The standard Hypertext Transfer Protocol, which means that the callback server is a
web server that is listening on a specified (or default) port

https:// The Hypertext Transfer Protocol running over the Secure Sockets Layer, which means
that the callback server is a web server that is listening on a specified (or default) port

File System Transcription info is written to files that are located in a specified directory on the
system on which the V-Spark software is installed. When using this protocol, make
sure that the user group is set to vocisrv and that the directory is writable by that group
so that V-Spark is able to write files into the specified directory.

SFTP Transcripts and other requested information are sent to a server via the Secure File
Transfer Protocol (SFTP), which requires additional authorization information, such as
the username and password, or an SSH key, as shown in Figure 5.7, “Configuring an
SFTP Callback Server and related options ”.

AWS S3 Transcription and other data is written to the Amazon Web Service (AWS) Simple
Storage Service (S3). Specifying this callback delivery mechanism causes a dialog that

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 59

is similar to the one shown in Figure 5.7, “Configuring an SFTP Callback Server and
related options ” to display fields in which you must specify the AWS access key id
and AWS secret access key that are used to securely communicate with AWS S3. See
Section 4.2, “Using the /transcribe API with AWS S3” for information about using
the /transcribe API to process archived audio files in zip format that are already
stored in S3.

Figure 5.7. Configuring an SFTP Callback Server and related
options

By default, the dialogs for each of these delivery mechanisms enable you to specify the type of transcription
data that is being sent. By default, sending a JSON transcription is always enabled. You can also select:

MP3 Checking this box causes V-Spark to also send an MP3 version of the transcribed audio file to
the callback server

Text Checking this box causes V-Spark to also send a text version of the transcribed audio file to the
callback server

Once you have made any changes that you want to make to the callback information, click Update to
close this dialog and return to V-Spark.

Important

Make sure that the machine and port specified in the callback URL are accessible from the V-
Spark instance that you are using. In some cases, this requires modifying client-side firewall
rules.

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

60 Proprietary and Confidential © 2019, Voci Technologies, Inc.

5.1.2. Example�Callback�Server
In REST applications, a callback is the address and (optionally) the method name and parameters of a
web application that can receive data via HTTP. Callbacks are usually used to enable another application
to receive and directly interact with the transcriptions produced by V-Spark. This section provides an
example of setting up a simple callback server, submitting a sample audio file for transcription using the
V-Spark /transcribe method, and then examining the results that are received by the callback server.
This section concludes with suggestions for troubleshooting common problems when setting up and using
a callback server.

5.1.2.1. Setting�up�a�Sample�Callback�Server
To follow this example, you must have a callback server running on a given host and port. If you do not
already have a callback server, the easiest way to simulate a callback server is to use the netcat application
to listen on a specified port and display the information that it receives. The netcat application is a computer
networking utility for reading from and writing to network connections using the TCP or UDP protocols.
The name of its executable version is typically nc or nc.exe, depending on the operating system that you
are using. The netcat utility is included in most Linux distributions and is freely available for most modern
operating systems [https://en.wikipedia.org/wiki/Netcat#Ports_and_reimplementations].

The sample output shown later in this section was produced by netcat that was started using the
following Linux command-line command:

while true ; do nc -l 5555 -k ; done

The trivial callback server that we are implementing here with the netcat command continually executes
the netcat command, listening on port 5555 (the -l option), and keeps its connections alive by listening
for another connection after its current connection is completed (the -k option). It does not have to
generically return any values to applications that talk to that callback server because V-Spark either expects
an HTTP return code of success or only retries a limited number of times (100, by default) before canceling
the callback.

5.1.2.2. Submitting�a�Sample�File�for�Text�Transcription
The following command calls the V-Spark API, specifies the address of the callback server, specifies that
you want text format output, and identifies the audio file that you want to transcribe:

curl -F callback=http://www.example.com:5555 \
 -F token=123e4567e89b12d3a456426655440000 \
 -F output=text -F "file=@sample7.wav;type=audio/x-wav" \
 http://vspark_host/transcribe

This sample command sends a text transcription of the audio file sample7.wav to the callback server.
The text that was transcribed via the cURL command that was shown previously is the following:

Note that the sample audio file used in this example is a mono audio file, so the different portions of the
audio in which voices are active (known as utterances) are separated by newlines.

5.1.2.3. Receiving�Transcription�Results
A callback server is generally used to collect output and forward it to some other application, process the
transcription itself, or perhaps simply to preserve the output for subsequent use. Using the sample callback
server that was introduced earlier, transcriptions are written to the standard output for the shell in which
you executed the netcat command.

https://en.wikipedia.org/wiki/Netcat#Ports_and_reimplementations
https://en.wikipedia.org/wiki/Netcat#Ports_and_reimplementations
https://en.wikipedia.org/wiki/Netcat#Ports_and_reimplementations

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 61

The following example shows the output that the netcat callback server displays after a call to that server
when text output was requested:

As discussed earlier, the goal of a callback server is to enable another application to receive and directly
interact with the transcriptions produced by V-Spark. However, a simple callback server such as the one
used in this section can also be convenient when testing the effects of trying different options with calls
to V-Spark's /transcribe method.

5.1.2.4. Troubleshooting�a�Callback�Server
If files are being uploaded successfully to V-Spark, you received a success code (HTTP code 200) and a
requestid in response to uploading to V-Spark. If your callback server is not receiving results, check the
items in the following list:

• Verify that external hosts can reach your callback server - Receiving a success code and requestid
in response to POSTing a request to V-Spark shows that the system that is POSTing the request can
reach V-Spark. This does not mean that V-Spark can reach your callback host. This lack of reachability
is usually due to firewall or network connectivity restrictions.

Verifying connectivity can most easily be done using a simple callback server like the one that was
discussed in Section 5.1.2.1, “ Setting up a Sample Callback Server ”.

To test connectivity between V-Spark and your callback server, log in on a host that is not on your local
network and can be reached directly from the Internet. Once you are logged in there, attempt to reach
the host on which your callback server is running. The following is a sample curl command that simply
probes the URL at which a callback server is listening:

curl -i http://host:5555

The host and port that you specify are the host and port on which your callback server is listening.

The -i option tells the curl command to display the HTTP header that it receives. For example, if you are
using the sample callback server that was discussed earlier, you will receive a result that is something
like the following:

HTTP/1.1 200 OK

Note

If your network administration policies restrict inbound connectivity from external hosts,
contact <support@vocitec.com> for the list of V-Spark IP addresses from which
access needs to be allowed.

• Identify problems in your callback server - If you are able to reach the host and port on which your
callback server is running from some other host on the Internet, connectivity is not the problem. Try the
following steps to identify problems with your callback server:

• Verify that you can POST directly to your callback server - use a command like the following to
simulate the data that would be sent by V-Spark to your callback server:

curl -F "file=@test.zip;type=application/zip" \
 -F requestid=700e7496-4fce-4963-aa7b-b3b26600f813 \
 https://HOST:PORT/endpoint

This command provides the two fields of the multipart POST that your callback server needs to be
able to handle. Ensure that your callback server correctly returns success (HTTP code 200) when
these two fields are received.

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

62 Proprietary and Confidential © 2019, Voci Technologies, Inc.

• Verify correct error handling - it is possible for V-Spark transcription to encounter an error. In such
cases, an error message will be POSTed in an error field to your callback server. Your callback server
must be able to handle receiving error messages from V-Spark. The following example command
sends the error message This is a sample error to your callback server:

curl -F "error=This is a sample error" \
 -F requestid=700e7496-4fce-4963-aa7b-b3b26600f813 \
 http://HOST:PORT/endpoint

This sample command should trigger error handling in your callback server, such as logging a
message.

If you still cannot identify or resolve the problem with your callback server, contact
<support@vocitec.com> for assistance in diagnosing the problem that you are experiencing.

5.2. Reference�for�the�/request�API
If you have submitted audio files for processing using V-Spark or submitted zip files that contain audio files
and optional metadata through the /transcribe API method that is described in Section 4.1, “Reference
for the /transcribe API”, the /request API method enables you to retrieve overall status information,
short and long status/summary information in JSON format, and various results of transcribing and
analyzing those audio files. The /request API is typically only directly used when you want to embed
result retrieval in applications and you therefore cannot use the V-Spark GUI and its callback server
mechanism.

Important

Before you can begin interacting with V-Spark via the REST API you must create a Folder
using the V-Spark GUI. Each Folder has associated configuration information such as the
language model to use for transcription and the names of metadata fields available for
filtering. See the "V-Spark 3.5.0 Quickstart Guide" and "V-Spark 3.5.0 Management Guide"
for more information. These documents are available under the Help pulldown immediately
after logging into the V-Spark GUI.

Synopsis

 http://SERVER/request/ORG_SHORT/VERB?requestid=REQUESTID&token=AUTH_TOKEN

Variables used in this example command are the following:

SERVER The name or IP address of the computer system on which V-Spark is installed

ORG_SHORT The short name of the organization that you are using. Finding that information was
discussed in Chapter 4, Submitting audio and metadata for processing and shown in
Figure 4.1, “Location of the V-Spark Organization Short Name”.

VERB The action that you want the /request API to perform. These verbs and the data that
they return are described in the next section (DESCRIPTION).

REQUESTID The unique identifier for the request about which you want to retrieve results or status
information

AUTH_TOKEN The authorization token that you are using to retrieve information. Locating your
authorization token is described in Chapter 4, Submitting audio and metadata for
processing. Locating an authorization token for the company associated with the folder

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 63

that you are uploading to is shown in Figure 1.1, “Location of a Company Authorization
Token”.

Description

The /request API enables you to retrieve status information and converted content for files that you
have submitted for transcription.

The items in the rest of this section refer to retrieving status information or transcription results from
both zip and audio files that have been submitted for transcription. Remember that while both the /
transcribe API and V-Spark enable you to submit audio and metadata files individually, only files that
have been encapsulated into a single "zip" file and uploaded at the same time will be associated properly.

The /request method takes the following verbs to identify the type of information that you are
attempting to retrieve based on a requestid:

status Possible return values for this verb are the following:

analyzing The zip or audio file associated with the specified requestid has been
received and is in the process of being transcribed and analyzed by V-Spark

done Transcription of all of the audio files in the zip or audio file associated with
the specified requestid has completed

error No results will ever be available. Check the contents of the zip or audio file
that is associated with the specified requestid to verify that it contains
valid audio files.

received The zip or audio file associated with the specified requestid has been
received and the audio file(s) that it contains are in the process of being
transcribed

summary Returns a short response in JSON format that contains the following information about the
request that was identified by the specified requestid:

• a time_submit timestamp which identifies the time that the request was submitted

• a time_completetimestamp which identifies the time that analyzing the contents of the
zip or audio file was completed

• counts of the following categories:

• number of audio files that were submitted in the zip or audio file that is associated with
the specified requestid

• number of audio files that were successfully processed in the zip or audio file that is
associated with the specified requestid

• number of audio files that were successfully analyzed in the zip or audio file that is
associated with the specified requestid

• number of audio files in the zip or audio file that is associated with the specified
requestid that generated an error when being processed or analyzed

Note

Count information is not provided for fields that are NULL.

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

64 Proprietary and Confidential © 2019, Voci Technologies, Inc.

• status: the over-all status of handling the zip or audio file associated with the request
that is associated with the specified requestid. This is the same value as returned by
the status verb, with the same list of possible values.

details Returns a long response in JSON format that contains:

• the information provided by the summary verb for the zip or audio file that was uploaded
under the specified requestid

• a filedetails section that provides a fullfilename and the same information for
each file that was part of the request that was identified by the specified requestid:

result A zip file containing different types of data that is associated with the transcription of the
zip or audio file that was uploaded under the specified requestid. Optional Boolean
parameters identify the type of data that is contained in this zip file:

json Include the complete transcription information (transcribed text, emotion, sentiment,
and so on) in JSON format for each audio file. By default, this option is "on" ("1").

mp3 Include the mp3 version of each audio file. By default, this option is "off" ("0").

txt Include a text file containing the transcription of each audio file. By default, this
option is "off" ("0").

If the /request method's result verb is called with all output formats disabled, the API
call will return a 404 and the message "No file types were specified".

Content Types

• status verb returns plain text data with the "text/html" MIME type

• summary verb returns JSON formatted data with the "application/json" MIME type

• details verb returns JSON formatted data with the "application/json" MIME type

• result verb returns a zip file with the "application/zip" MIME type

• Errors will be returned with the "text/html" MIME type

5.3. Examples�of�calling�the�/request�API
The following examples show calling the /request method with some of its verbs, using the cURL
command-line utility (executed as the curl command). Sample output is also provided, but depends on the
host on which the API is running, the contents of the zip or audio file that you uploaded, the request ID,
the organization to which you uploaded the file, and authorization token that you are using. The cURL
utility is freely available for multiple operating systems including Linux, Windows, and Mac OS X [https://
curl.haxx.se/download.html].

Note

Escaped newlines (that is, lines in the cURL command or the example output that end with a
backslash) are added for readability. They must not be present in cURL commands, and are
also not present in the output of those commands.

https://curl.haxx.se/download.html
https://curl.haxx.se/download.html
https://curl.haxx.se/download.html

Using the V-Spark 3.5.0 API Chapter 5. Receiving transcripts and status information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 65

Example commands are shown in normal monospaced text. Example output from each
command is shown in bold monospaced text.

A cURL example that shows calling the /request API's status verb:

 curl 'http://example.company.com/request/Test-Testing/status \
 ?requestid=a0cf623d-9e5c-4890-886f-832acb29635e \
 &token=0123456789abcde0123456789abcde01'

 done

A cURL example that shows calling the /request API's summary verb:

 curl 'http://example.company.com/request/Test-Testing/summary\
 ?requestid=a0cf623d-9e5c-4890-886f-832acb29635e\
 &token=0123456789abcde0123456789abcde01'

 {"time_submit":"2017-01-16T21:43:08.000Z",\
 "time_complete":"2017-01-16T21:45:16.000Z",\
 "submitted":1,"processed":1,"analyzed":1,"error":0,"status":"done"}

A cURL example that shows calling the /request API's details verb:

 curl 'http://example.current.com/request/Test-Testing/details?\
 requestid=a0cf623d-9e5c-4890-886f-832acb29635e\
 &token=0123456789abcde0123456789abcde01'

 {"time_submit":"2017-01-16T21:43:08.000Z",\
 "time_complete":"2017-01-16T21:45:16.000Z", \
 "submitted":1,"processed":1,"analyzed":1,"error":0,"status":"done",\
 "filedetails":[{"fullfilename":"Call4541511.mp3","status":"OK",\
 "job_start":"2017-01-16T21:45:14.000Z",\
 "job_finish":"2017-01-16T21:43:12.000Z",\
 "analyze":"2017-01-16T21:45:14.000Z","size":4984848}]}

A cURL example that shows calling the /request API's result verb to return the JSON transcript of
your audio file and write it to the file json_transcript.zip:

 curl 'http://example.company.com/request/Test-Testing/result?\
 requestid=a0cf623d-9e5c-4890-886f-832acb29635e\
 &token=0123456789abcde0123456789abcde01' > json_transcript.zip

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 100 28304 100 28304 0 0 2780 0 0:00:10 0:00:10 --:--:-- 6821

 (Displays cURL's download status)

Chapter 5. Receiving transcripts and status information Using the V-Spark 3.5.0 API

66 Proprietary and Confidential

Using the V-Spark 3.5.0 API Chapter 6. Retrieving Folder Status Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 67

Chapter�6. Retrieving�Folder�Status
Information

Chapter 3, Retrieving and Updating V-Spark Information provided an overview of the V-Spark REST APIs
that enable you to read (and, in one case, update) configuration information about a V-Spark installation.
Chapter 7, Searching V-Spark Data provides detailed information about the /search API. This chapter
provides detailed information about the /status API that enables you to retrieve status information
about the transactions that are associated with a particular folder, all of the the folders of a company or
organization, or all of the folders within the entire V-Spark installation.

This API returns and uses information in JSON format. As a REST API, this API can be used in any
programming language or with any application that supports REST calls and which provides or can invoke
a JSON parser that enables you to work with the output of the call.

6.1. Reference�for�the�/status�API
The /status API enables you to retrieve status information about the activities that are associated with
the folders within a V-Spark installation. The call can request status information on all folders within the
installation, or limit the request to a particular company, organization, or folder.

Synopsis

 /status
 /status/CO_SHORT
 /status/CO_SHORT/ORG_SHORT
 /status/CO_SHORT/ORG_SHORT/FOLDERNAME

Description

As shown in the synopsis, the V-Spark /status API enables you to retrieve status information about
an entire V-Spark installation, a specific company, a specific organization, or a specific folder. Variables
used in a call to the /status API are the following:

CO_SHORT The short name of the company for which you want to retrieve status information

ORG_SHORT The short name of the organization that you are using. Finding that information is shown
in Figure 4.1, “Location of the V-Spark Organization Short Name”.

FOLDERNAME The name of the V-Spark Folder from which you want to retrieve status information

The call also accepts the following parameters:

TOKEN The V-Spark authorization token that you are using to establish permission to retrieve
information. You can either use the root token for the target V-Spark installation (located in the
file /opt/voci/state/vspark/apitoken) or the authorization token for the company
under which the specified FOLDER is located. Locating your company authorization token is
shown in Figure 1.1, “Location of a Company Authorization Token”.

This parameter is required.

FORMAT The format of the returned status information. You may specify json or csv format. The
default format is json.

Chapter 6. Retrieving Folder Status Information Using the V-Spark 3.5.0 API

68 Proprietary and Confidential © 2019, Voci Technologies, Inc.

When status information is returned in CSV form, the first row in the output provides heading
for the data in the other rows in the table.

Tip

Being able to retrieve information from the /status API in CSV format (by passing the
format=csv parameter) makes it easy to quickly preview any level of status information.
Tools such as spreadsheets typically support importing CSV data. As an example, Figure 6.1,
“Previewing /status information in a spreadsheet” shows the CSV output for a folder being
previewed in the Libre Office spreadsheet application, Calc.

Content Types

• GET method with json option returns JSON formatted data with the "text/html" MIME type

• GET method with csv option returns comma separated values with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

The next few sections illustrate the /status information that is retrieved from the various levels of the
hierarchy of a V-Spark installation.

6.2. Sample�JSON�and�CSV�Output�from�the�/
status�API

The /status API returns a JSON or CSV (comma-separated value) representation of the V-Spark
installation status data that is being requested. The following sections show the JSON and CSV output for
each aspect of a V-Spark installation:

• Section 6.2.1, “Sample /status JSON and CSV Output for a Company”

• Section 6.2.2, “Sample /status JSON and CSV Output for an Organization”

• Section 6.2.3, “Sample /status JSON and CSV Output for a Folder”

Note

In the CSV examples, linebreaks have been inserted in both the heading and data entries at
the same output rows.

6.2.1. Sample�/status�JSON�and�CSV�Output�for�a�Company
The following is sample output from a /status/CO_SHORT/ API call for a company in a V-Spark
installation. This shows the status of all of the folders of all of the organizations that have been defined
within that company:

{
 "DocTestCo-DocTesting1": {},
 "DocTestCo-DocTesting2": {

Using the V-Spark 3.5.0 API Chapter 6. Retrieving Folder Status Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 69

 "folder2": {
 "mode": "active",
 "servers": {
 "srvr1": "OK"
 },
 "jobmgr": {
 "192.168.150.71": {
 "numerrs": 0,
 "timestamp": "2019-06-24_18:40:28",
 "hostname": "srvr1",
 "numtranscoding": 0,
 "version": "2.4.0-0",
 "starttime": "2019-06-21_20:25:07",
 "numdecoding": 0
 }
 },
 "queued": {
 "count": 0,
 "lastactive": "2019-06-24T18:36:15.000Z"
 },
 "analyzing": {
 "lastactive": "2019-06-24T18:45:58.000Z",
 "count": "2"
 },
 "error": {
 "lastactive": null,
 "count": "0"
 }
 },...
 },...
}

"company","organization","folder","mode","servers","queued.count",\
"queued.lastactive","decoding.count","decoding.lastactive","analyzing.count",\
"analyzing.lastactive","error.count","error.lastactive"
"DocTestCo","DocTestCo-DocTesting2","folder2","active","{""srvr1"":""OK""}",0,\
,,,"0",,"0",
"DocTestCo","DocTestCo-DocTesting3","folder3","active","{""srvr1"":""OK""}",0,\
"2019-06-18T18:58:30.000Z",,,"0","2019-06-18T18:59:29.000Z","0",
"DocTestCo","DocTestCo-DocTesting3","folder33","active","{""srvr1"":""OK""}",0,\
"2019-06-18T19:01:12.000Z",,,"0","2019-06-18T19:14:44.000Z","2","2019-06-18T19:14:00.000Z"

6.2.2. Sample�/status�JSON�and�CSV�Output�for�an
Organization

The following is sample JSON output from a /status/CO_SHORT/ORG_SHORT/ API call for one
organization of a company in a V-Spark installation. This shows the status of all of the folders that have
been defined within that organization of that company:

{
 "DocTestCo-DocTesting2": {
 "folder2": {
 "mode": "active",
 "servers": {
 "srvr1": "OK"
 },
 "jobmgr": {
 "192.168.150.71": {
 "numerrs": 0,
 "timestamp": "2019-06-24_18:40:28",
 "hostname": "srvr1",
 "numtranscoding": 0,
 "version": "2.4.0-0",
 "starttime": "2019-06-21_20:25:07",
 "numdecoding": 0
 }
 },
 "queued": {
 "count": 0,
 "lastactive": "2019-06-24T18:36:15.000Z"
 },
 "analyzing": {

Chapter 6. Retrieving Folder Status Information Using the V-Spark 3.5.0 API

70 Proprietary and Confidential © 2019, Voci Technologies, Inc.

 "lastactive": "2019-06-24T18:45:58.000Z",
 "count": "2"
 },
 "error": {
 "lastactive": null,
 "count": "0"
 }
 },...
 }
}

The CSV equivalent of this data is the following:

"company","organization","folder","mode","servers","queued.count",\
"queued.lastactive","decoding.count","decoding.lastactive","analyzing.count",
"analyzing.lastactive","error.count","error.lastactive"
"DocTestCo","DocTestCo-DocTesting","Test01","active","{""asrsrvr1"":""OK""}",0,\
"2017-06-16 09:06:45.584507060 -0400",0,"2017-06-16 09:05:45.451651713 -0400",0,\
"2017-06-16 09:15:24.235266461 -0400",1,"2017-05-18 12:46:55.780155897 -0400"

6.2.3. Sample�/status�JSON�and�CSV�Output�for�a�Folder
The following is sample JSON output from a /status/CO_SHORT/ORG_SHORT/FOLDERNAME/
API call for one folder of in a V-Spark installation. This shows the status of all that folder alone.

{
 "mode": "active",
 "servers": {
 "srvr1": "OK"
 },
 "jobmgr": {
 "192.168.150.71": {
 "numerrs": 0,
 "timestamp": "2019-06-24_18:45:58",
 "hostname": "srvr2",
 "numtranscoding": 0,
 "version": "2.4.0-0",
 "starttime": "2019-06-21_20:25:07",
 "numdecoding": 0
 }
 },
 "queued": {
 "count": 0,
 "lastactive": "2019-06-24T18:36:15.000Z"
 },
 "analyzing": {
 "lastactive": "2019-06-24T18:45:58.000Z",
 "count": "2"
 },
 "error": {
 "lastactive": null,
 "count": "0"
 }
}

"company","organization","folder","mode","servers","queued.count",\
"queued.lastactive","decoding.count","decoding.lastactive","analyzing.count",\
"analyzing.lastactive","error.count","error.lastactive"
"DocTestCo","DocTestCo-DocTesting2","folder2","active","{""srvr1"":""OK""}",0\
,,,,"0",\
,"0",

Figure 6.1, “Previewing /status information in a spreadsheet” shows the CSV output for a folder being
previewed in the Libre Office spreadsheet application, Calc.

Using the V-Spark 3.5.0 API Chapter 6. Retrieving Folder Status Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 71

Figure 6.1. Previewing /status information in a spreadsheet

6.3. Using�the�/status�API�with�cURL
The cURL utility makes it easy to test using the V-Spark API by providing a command-line mechanism
for invoking APIs such as the /status API. The next few sections provide examples of using the GET
verb with the /status API from the command-line via the cURL command.

If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

An example of a cURL command to retrieve status information from from the company "DocTestCo",
organization "DocTestCo-DocTesting", folder "Test01" on the host example.company.com is the
following:

curl -s 'http://example.company.com/status/DocTestCo/DocTestCo-DocTesting/Test01 \
 ?token=01234567890123456789012345678901'

To produce this same output in CSV format, execute a command like the following, instead:

curl -s 'http://example.company.com/status/DocTestCo/DocTestCo-DocTesting/Test01 \
 ?format=csv&token=01234567890123456789012345678901'

To produce this output in a pretty-printed form that is more usable, and write that output to the file
log.out, you could execute a command like the following:

curl -s 'http://example.company.com/status/DocTestCo/DocTestCo-DocTesting/Test01 \
 ?token=012345678901234567890123456789012' | \
 python -m json.tool > log.out

6.4. Using�the�/status�API�with�Python
V-Spark's /status API is a read-only API that provides programmatic access to status information about
various levels of the hierarchy of a V-Spark installation. As explained in Section 6.1, “Reference for the /
status API” and shown in the examples in Section 6.3, “Using the /status API with cURL”, the API enables
you to pass the level of the hierarchy that you are interested in as part of the URL of the /status call, and
specify the format in which you want the output data to be returned as the format parameter to the call.

To read data from a V-Spark installation, you can use the root token, but that's analogous to running every
Linux command as the superuser - it is cleaner to use the authorization token that is associated with each

Chapter 6. Retrieving Folder Status Information Using the V-Spark 3.5.0 API

72 Proprietary and Confidential © 2019, Voci Technologies, Inc.

company. You only need the root token when reading multi-company information, such as when retrieving
the root token for each company in the V-Spark installation.

As shown previously in Figure 3.26, “Sample Python code to combine data read from the /
config API”, you can dynamically retrieve company information from a V-Spark installation (in the
gettokens() function) and folder information for the organizations in that company (retrieved in
the getfolderinfo() function). You can then combine the company and token information with
the folder information in order to explore all of the companies, organizations, and folders in a V-Spark
installation (in the printfolders() function).

Figure 6.2, “Sample Python Code to Retrieve /status Information” builds on the code from Figure 3.26
in several ways:

• Sharing the gettokens() and getfolderinfo() functions shows that extracting company
and token information and establishing the relationship between company token information and the
hierarchical aspects of companies, organizations, and folders are common tasks when writing many V-
Spark applications.

• Replacing the printfolderinfo() function with a findfolders() function makes it easy to
call another function to interact with each folder.

• Adds a writefolderstatus() function to perform the key functionality of the example, writing
status information for that level of their hierarchy in the format that you specified on the command-line.

As with the Python code example shown in Figure 3.26 a quick code walkthrough highlights how this
example works.

Using the V-Spark 3.5.0 API Chapter 6. Retrieving Folder Status Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 73

#!/usr/bin/env python
#
Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.
#
Application that reads company and folder information about a
product installation on a specified host, then uses the company's
short name to link the two. The application then uses the company's
short name, the organization's short name, and each folder name to
call the /status API for each folder. The output format (json or
csv) is specified as the third argument, and determines both the
extension of the files that are written to and the format of their
content.
#

import requests
import json

def usage(argv):
 print "Usage:", argv[0], "<sparkhost:port> <root token> <csv || json>"
 exit(1)

def main(argv):

 if len(argv) != 4: usage(argv)
 host, token, output_format = argv[1:]
 tokens = gettokens(host,token)
 folderinfo = getfolderinfo(host,token)
 getfolders(host, folderinfo, tokens, output_format)

def gettokens(host, token):
 url = "http://%s/config?token=%s" % (host,token)
 cfg = requests.get(url).json()
 return dict([(comp,d['uuid']) for comp,d in cfg.iteritems()])

def getfolderinfo(host, token):
 url = "http://%s/config/folders?token=%s" % (host,token)
 return requests.get(url).json()

def findfolders(host, folder_info, tokens, output_format):
 for comp, comp_data in folder_info.iteritems():
 print comp+" (Token: "+tokens[comp]+")"
 for org, org_data in comp_data.iteritems():
 for folder, folder_data in org_data.iteritems():
 writefolderstatus(host, tokens[comp], comp, org, folder, output_format)

def writefolderstatus(host, token, comp, org, folder, output_format):
 url = "http://%s/status/%s/%s/%s?token=%s&format=%s" % (host, comp, org, folder, token, output_format)
 print " URL is "+url
 OUTPUT_FILE = comp+"-"+org+"-"+folder+"-status."+output_format
 print " Writing JSON to "+OUTPUT_FILE
 target = open(OUTPUT_FILE, 'w')
 if output_format == "json":
 target.write(json.dumps(requests.get(url).json(), indent=4, sort_keys=True))
 if output_format == "csv":
 response = requests.get(url)
 target.write(response.content)
 target.write('\n')
 target.close()

if __name__ == '__main__':
 from sys import argv
 main(argv)

Figure 6.2. Sample Python Code to Retrieve /status Information

The major steps in the Python application shown in Figure 6.2, “Sample Python Code to Retrieve /status
Information” are the following:

The main function provides a traditional main routine that shows the order in which functions are
called in the application
Check if the right number of command-line arguments have been provided, assign them to
appropriate variables if so and identifying the expected arguments if not.

Chapter 6. Retrieving Folder Status Information Using the V-Spark 3.5.0 API

74 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Uses the /config API to retrieve the company information from the V-Spark installation and build
a dictionary that only contains the company name and associated token information from the host
that was specified on the command-line
Uses the /config/folders API to retrieve the folder-level configuration information from the
host that was specified on the command-line
Initiates the primary loop for the application, which is controlled by the companies that were found in
the information that was retrieved from the host specified on the command-line. Each company has
an associated authorization token (originally stored in the uuid name/value pair), which is the other
field for each company entry in the dictionary that was constructed in the gettokens()function.
The short name for each company is the data item in the company JSON that provides the linkage
between the data from the company and folder sources. This loop then uses this information to
walk the company/organization/folder hierarchy in the V-Spark installation that was specified on the
command-line, calling the function that represents the core functionality of this application.
Writes status information in the format that was requested on the command-line to a file whose name
is CO_SHORT-ORG_SHORT-FOLDER-status.output-format.
The name of the scope in which the top-level code executes. This enables the sample application to
execute standalone or as a part of another application. This is a standard Python notation, and is not
anything that is specific to V-Spark.

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 75

Chapter�7. Searching�V-Spark�Data
V-Spark provides several REST APIs that enable you to read (and, in one case, update) configuration,
status, and log information about a V-Spark installation, and also to search that installation. Chapter 3,
Retrieving and Updating V-Spark Information provided an overview of these APIs and then provided
details about the /config and /list APIs. Chapter 6, Retrieving Folder Status Information provides
detailed information about the /status API. The next few sections provide detailed information about
the /search API which enables you to programmatically search the files that contain transcripts in
specified folders in a V-Spark installation. All of these APIs return and use information in JSON format,
many also support Comma-Separated Value (CSV) output, and some support direct exporting of matching
transcript files in the ZIP archive format.

As REST APIs, these APIs can be used in any programming language or with any application that supports
both REST calls and which provides or can invoke a JSON parser that enables you to work with the output
of these calls.

7.1. Reference�for�the�/search�API
The /search API enables you to search all transcriptions for an organization or those that are located in
a folder within an organization. You can search using two different REST methods:

GET Search parameters are specified as options that are passed as parameters which are part of a query

POST Search parameters are specified name/value pairs in a JSON file that is passed to the API

Synopsis

GET /search/CO_SHORT/ORG_SHORT?token=TOKEN&OPTIONS...
GET /search/CO_SHORT/ORG_SHORT/FOLDERNAME?token=TOKEN&OPTIONS...
POST /search/CO_SHORT/ORG_SHORT?token=TOKEN&OPTIONS...
POST /search/CO_SHORT/ORG_SHORT/FOLDERNAME?token=TOKEN&OPTIONS...

Description

As shown in the synopsis, the V-Spark /search API supports both GET and POST calls, both of which
search a specified V-Spark installation, but which pass parameters to the API in different ways. See
Section 7.3, “Using the /search API with cURL” for examples of passing parameters in both ways using
the cURL command. See Section 7.4, “Using the /search API with Python” for examples of using both
the GET and POST models in Python.

Variables used in a call to the /search API are the following:

CO_SHORT The short name of the company whose transcripts you want to search

ORG_SHORT The short name of the organization that you are interested in. Finding that information
is shown in Figure 4.1, “Location of the V-Spark Organization Short Name”.

FOLDERNAME The name of the V-Spark Folder whose transcripts you want to search

TOKEN The V-Spark authorization token that you are using to establish permission to retrieve
information. You can either use the root token for the target V-Spark installation
(located in the file /opt/voci/state/vspark/apitoken) or the authorization
token for the company under which the specified ORG_SHORT or FOLDERNAME is
located. Locating a company's authorization token is shown in Figure 1.1, “Location of
a Company Authorization Token”.

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

76 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Subsequent sections provide detailed information about the many GET options (which map to POST name/
value pairs) that you can specify in calls to the /search API. Options are discussed in the form that they
would be specified as part of a GET call. The value that you specify for the output option determines
what other sets of options you can specify.

Content Types

• GET method options are expected as query parameters with the "text/html" MIME type

• POST method options are expected as JSON objects with the "application/json" MIME type

• count output type returns plain text data with the "text/html" MIME type

• summary output type with json option returns JSON formatted data with the "text/html" MIME type

• summary output type with csv option returns comma separated values with the "text/html" MIME type

• details output type returns JSON formatted data with the "text/html" MIME type

• zip output type returns a zip file with the "application/zip" MIME type

• Errors will be returned with the "text/html" MIME type

7.1.1. Output�Type�Options
After identifying the token that you want to use to access the V-Spark installation or company data that
you want to query (discussed in Section 7.1, “Reference for the /search API”), the most basic option that
you will want to specify is the output option. The value that you provide for this option determines the
other options that you can provide when calling the /search API:

output=TYPE

Specifies the type of results that you want to receive from a search query:

count Returns the number of search results that matched your query. After specifying the
output=count option on the command-line or in a JSON file, you can also specify
any of the options discussed in Section 7.1.2, “Search Term Options”.

details Returns a collection of the Voci JSON for the search results for each result that matched
your query. After specifying the output=details option on the command-line or in
a JSON file, you can also specify any of the options discussed in Section 7.1.2, “Search
Term Options” or Section 7.1.5, “Output Sorting Options”.

summary Returns a summary of the matching search results in JSON or Comma-Separated Value
(CSV) format. This is the default value, and is used when no other output value
is specified. After specifying the output=summary option on the command-line, in
a JSON file, or by using it as a default value that you are not overriding, you can
also specify any of the options discussed in Section 7.1.2, “Search Term Options”,
Section 7.1.5, “Output Sorting Options”, Section 7.1.4, “Output Field Options”, or
Section 7.1.3, “Output Format Options”.

zip Returns the files that matched your query, returning them in the ZIP archive format. The
ZIP archive that is returned includes these audio files hierarchically. After specifying
the output=zip option on the command-line or in a JSON file, you can also specify
any of the options discussed in Section 7.1.2, “Search Term Options” or Section 7.1.5,
“Output Sorting Options”. You can also pass the zipfiles= parameter to identify the
files that you want to be included in the output zip file. This must be one or more of
json, mp3, or text. Specifying multiple values is done as a comma-separated list.

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 77

When explicitly specified in a JSON file as part of a /search POST call, the output value is
specified as the following in your JSON file of search specifications:

"output" : "value"

7.1.2. Search�Term�Options
The types of searches that you can perform using the V-Spark /search API demonstrate its power and
flexibility. Search parameters and potential values are the following:

agent_clarity=N-M Search for audio records with agent voice clarity percentage within
the range of N to M, which are floating point values. Agent voice
clarity measures how clear the agent sounds in the recorded audio.
Agents with a clarity of "1" would be the clearest. Low clarity is the
result of poor signal, background noise, accent, or poor enunciation.

agent_emotion=EMOTION Search for files where the emotional score of the agent's portion
of the audio is EMOTION. Possible values for EMOTION are
improving, negative, positive, and worsening. Only
one agent_emotion value can be used within a single search.
For example:

agent_emotion=negative

agent_gender=GENDER Search for files where the gender of the agent has been identified
as GENDER. Possible values for GENDER are female and male.
Only one agent_gender value can be used within a single
search. For example:

agent_gender=female

app.name=APPNAME and
app.CATEGORY=SCORE

Search for transcripts that have received the specified SCORE
level from the V-Spark application named APPNAME in the
specified top-level category, or optional lower-level category
of that category. Specify lower-level categories using a full
dot-separated path through the category tree. For example:
app.TOP_CATEGORY.LOWER_CATEGORY.LOWER_CATEGORY
Score level may be one of the following values:
• All - Score greater than 0
• High - Score greater than 0.66
• Medium - Score greater than 0.33
• Low - Score between 0 and 0.33
• None - Score of 0

client_clarity=N-M Search for audio records with client voice clarity percentage within
the range of N to M, which are floating point values. Client voice
clarity measures how clear the client sounds in the recorded audio.
Clients with a clarity of "1" would be the clearest. Low clarity is the
result of poor signal, background noise, accent, or poor enunciation.

client_emotion=EMOTION Search for files where the emotional score of the client's portion
of the audio is EMOTION. Possible values for EMOTION are
improving, negative, positive, and worsening. Only
one client_emotion value can be used within a single search.
For example:

client_emotion=improving

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

78 Proprietary and Confidential © 2019, Voci Technologies, Inc.

client_gender=GENDER Search for files where the gender of the client has been identified
as GENDER. Possible values for GENDER are female and male.
Only one client_gender value can be used within a single
search. For example:

client_gender=male

daterange=START-END Enables you to specify a date range that your search should be
restricted to. The START and END values, though optional, are
both expressed as YYYYMMDD[HHmmss] values where the year
(YYYY) month (MM) and day (DD) values are required, the hours
(HH), minutes (mm), and seconds (ss) are optional. Date ranges
are always assumed to be positive (where START is less than END).
No verification is done to ensure that this is correct. Invalid date
ranges will simply return no values. If START is not specified, a
default value of 01 January, 1900 is used. If END is not specified,
the current date is used.

diarization=SCORE Search for audio records with a diarization score of at least SCORE.
which is a floating point value between 0 and 1. When mono
(1 channel) audio has multiple speakers, diarization can separate
the speakers for analysis. The diarization score identifies how
completely the call was divided into individual speakers. A score
of 2 means the call was not diarized. Diarization technology is not
perfect, and to find calls where diarization is done well, set SCORE
closer to one than to zero. The tradeoff is that fewer calls will be
retrieved.

duration=N-M Search for audio records with durations within the range of N to M,
which are a common colon delimited duration format hh:mm:ss
that define a numeric range in seconds, where seconds (ss) is
required, hours (hh) and minutes (mm) are optional, and colons
are only included as appropriate when hours or minutes are
included. The following example would find durations between 30
minutes and one hour:

duration=30:00-01:00:00

overall_emotion=EMOTION Search for files where the overall emotional score of
the audio is EMOTION. Possible values for EMOTION are
improving, negative, positive, and worsening. Only
one overall_emotion value can be used within a single search.
For example:

overall_emotion=positive

overall_gender=GENDER Search for files where the overall gender of the speakers has been
identified as GENDER. Possible values for GENDER are female
and male. Only one overall_gender value can be used within
a single search. For example:

overall_gender=male

overtalk=N-M Search for audio records with overtalk percentages within the range
of N to M, which are floating point values. Overtalk occurs when
speakers talk over one another. A recording's ovetalk percentage is
the count of Agent-initiated overtalk turns as a percentage of the
total number of Agent speaking turns. In other words, out of all of

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 79

the Agent’s turns, it measures how many turns interrupted a Client’s
turn. An overtalk value of "1" indicates the most overtalk.

silence=N-M Search for audio records with silence percentages within the range
of N to M, which are floating point values. Silence is equal to all non-
speech time, as a percentage of the total audio duration. If music and
noise are not decoded to word-events, they are counted as silence.
Calls with a silence value of "1" contain the most silence.

terms.FIELD=VALUE Fields that can identified for searching are the following:
• agent
• agentid
• client
• file
• requestid
• speakers
• tag
• tid
• CLIENT-DATA - search any of the custom metadata fields that

have been entered within the folder with which your audio files
are associated

Include multiple terms in the value by using a comma-separated list.

terms.op=OPERATOR Combine multiple search terms (and therefore, their associated
fields) by using a logical and or or operator, where and is the
default operator. For example:

terms.tid=1,2&terms.op=or

7.1.3. Output�Format�Options
The format in which search results are delivered is specified by the following option:

format=FORMAT Identifies the output format in which your search results are delivered, where
FORMAT is csv or json. The default value is json. Producing Comma-Separated
Value (csv) output simplifies importing search results into other software, such as
spreadsheets, that support CSV input.

Important

If custom metadata fields are associated with the folders in which search results are found,
JSON output will only include fields that have values. CSV output will include all fields,
with an empty value for fields without an explicit value.

7.1.4. Output�Field�Options
Depending on the output format that you specified in your query, the /search API enables you to
identify the fields that you want to display when showing the results of your search. You can specify these
parameters when using summary as the /search API's output type.

Field specifications are a comma-separated list of specified fields to include or exclude in output. Fields
to exclude are preceded by a - sign. Field specifications are the following:

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

80 Proprietary and Confidential © 2019, Voci Technologies, Inc.

voci Fields that are specific to audio data that has been transcribed by V-Spark software. This
is the default behavior if no value for the fields option is specified. voci fields are:

agent_clarity How clear the agent channel/speech is, expressed as a value
between 0 and 1, where 1 is highest

agent_emotion Overall agent emotional intelligence assessment derived from
both acoustic and linguistic information, and having one of the
following values: Positive, Worsening, Improving,
or Negative

agent_gender Gender of the agent, one of Male or Female

agentid Identifier for a specific agent

client_clarity How clear the client channel/speech is, expressed as a value
between 0 and 1, where 1 is highest

client_emotion Overall agent emotional intelligence assessment derived from
both acoustic and linguistic information, and having one of the
following values: Positive, Worsening, Improving,
or Negative

client_gender Identification of the gender of the client, one of Male or
Female

datetime Transcript date and time, expressed in Coordinated Universal
Time (UTC)

diarization Only provided in 2 speaker, 1 channel calls; a value between
0 and 1 identifies how completely the call was divided into
individual speakers. A value of 1 is the best possible value
for speaker separation. A value of 2 means the call was not
diarized.

duration Duration of the call

es_doc_id Unique identifier for a transcript in Elasticsearch index. Not
included when voci is specified as return field.

filename Name of the uploaded audio or JSON file in which the search
request was matched

folder Name of the folder where the file was uploaded. Not included
when voci is specified as return field.

overall_emotion Overall emotional intelligence assessment for an audio
file, derived from both acoustic and linguistic information,
and having one of the following values: Positive,
Worsening, Improving, or Negative

overtalk Percentage of call when the agent talks over or interrupts the
client. Equal to the number of turns where the agent initiated
overtalk divided by the total number of agent turns.

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 81

preview An excerpt of the transcribed call, in which matched terms are
highlighted

requestid Unique identifier for a transcription request. This value is
assigned when an audio file is submitted for transcription.

score Calculation of how well a transcription matches the terms
specified in your search. This is represented as a value
between 0 and 1, and can depend on the type of query that you
submitted. For example, date range queries always provide
a score value of 1 for any transcription that occurred in the
specified date range.

silence Percentage of call duration that is silence. Equal to all non-
speech time, this value is calculated as call duration minus the
sum of the duration of each word. If music and noise are not
decoded to word-events, they would be counted as silence.

tags Tags added to files in the GUI. Not included when voci is
specified as return field.

tid The unique identifier of transcript

url URL to visit the file details in the GUI. Not included when
voci is specified as return field.

CLIENT-DATA Custom metadata fields, specified by name, that have been entered within the folder
with which the audio files are associated

all Get all voci and CLIENT-DATA fields in the audio files in the specified folder or in
all folders associated with an organization

apps To get scores for all applications, specify apps. (You may only specify either apps
or app.APPNAME, not both.)

app.APPNAME To get scores for a specific application, specify app.APPNAME (You may only specify
either apps or app.APPNAME, not both.) To get scores for a specific category in an
application, specify the category's full name, which includes its parents' names. For
example, app.APPNAME.TOP_CATEGORY.LOWER_CATEGORY.

7.1.5. Output�Sorting�Options
The V-Spark /search API provides multiple parameters that enable you to specify the way in which
search results should be sorted. You can specify these parameters when using any /search API output
type with the exception of the count output type.

Possible sorting output options are the following:

offset=NUMBER Specifies the number of the first search result that should be returned. The
offset is used in conjunction with the size option to enable you to
page through search results when their number exceeds the size value. For
example, if a search matches 500 results and you are using a size value
of 100, you would specify &offset=100 to return results 101-200, and

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

82 Proprietary and Confidential © 2019, Voci Technologies, Inc.

&offset=200 to return results 201-300, and so on. The default offset
value is 0.

size=NUMBER Specifies the number of matching results that will be returned at one time. The
default size value is 100. The maximum value for size is 1000.

sort=FIELD Specifies how matching search results should be ordered when returned.
Regardless of the specified sort FIELD, score is always used as a
secondary sort option. The default sort value is datetime. The following
Voci FIELDs are available sort options:

• agent_clarity

• agent_emotion

• agent_gender

• client_clarity

• client_emotion

• client_gender

• datetime

• diarization

• duration

• filename

• overall_emotion

• overtalk

• score

• silence

sortdir=DIRECTION Direction in which to sort output entries. DIRECTION should be either asc
for ascending order, or desc for descending order, based on data type. The
default value is desc.

7.2. Sample�JSON�Output�for�a�query�from�the�/
search�API

The following is an excerpt from the output of a call to the /search API, showing a file that matches
the query that was submitted, and which shows the default fields that are returned in a response:

[
 {
 "filename": "file1json.wav",
 "agentid": "105",
 "datetime": "2017-07-18 17:07:12",
 "duration": "0:05:25",
 "score": "1.0000",
 "tid": 5,
 "requestid": "11723359-d790-4a88-aff8-7925296e7df2",
 "agent_gender": "Female",
 "client_gender": "Male",
 "overall_emotion": "Improving",
 "client_emotion": "Negative",
 "agent_emotion": "Positive",
 "overtalk": "0.0000",
 "silence": "0.4269",
 "agent_clarity": "0.0000",
 "client_clarity": "0.8298",
 "diarization": "2.0000",
 "preview": {}
 },...
]

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 83

7.3. Using�the�/search�API�with�cURL
The cURL utility makes it easy to test using the V-Spark API by providing a command-line mechanism
for invoking APIs such as the /config API. The next few sections provide examples of using the GET,
POST, and DELETE output types with a V-Spark API from the command-line via the cURL command.

If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

The following is a cURL example that shows calling the /search API using the GET method, which
supplies the /search parameters as options on the URL:

curl http://example.company.com/search/Test/Test-Testing/Test01? \
 token=0123456789abcdef0123456789abcdef&duration=4.5-5.50

The following is a cURL example that shows calling the /search API using the POST method.

curl \
 -H 'Content-type: application/json' \
 -d '{"daterange":"20190613-20190614"}' \
 -X POST https://example.company.com/search/Test/Test-Testing/CallCenterDemosTest01?
token=1234567890abcdefghijk1234567890a

The -d flag provides a date range for the search as JSON-format data.

7.4. Using�the�/search�API�with�Python
You can also use the /search API using either GET or POST from programming languages such as
Python. The next sections provide sample Python code for a simple application that uses each of these
HTTP output types.

7.4.1. Using�the�/search�API�via�GET�with�Python
Figures Figure 7.1 and Figure 7.2 show a sample application that uses the /search API's GET method
to search the folders associated with a specified company (passed as a parameter) in a V-Spark installation
and saves matching results to a file. Whenever matching items are found, the application calls the API
with the output type set to count to identify how many matches were found.

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

84 Proprietary and Confidential © 2019, Voci Technologies, Inc.

#!/usr/bin/env python
#
Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.
#

import requests
import json
import urllib2

def usage(argv):
 print "Usage:", argv[0], "<sparkhost:port> <root token> <company> <params>"
 exit(1)

def main(argv):

 if len(argv) != 5: usage(argv)
 host, token, company, searchparams = argv[1:]
 tokens = gettokens(host,token)
 folderinfo = getfolderinfo(host,token)
 findfolders(host, folderinfo, tokens, company, searchparams)

def gettokens(host, token):
 url = "http://%s/config?token=%s" % (host,token)
 cfg = requests.get(url).json()
 return dict([(comp,d['uuid']) for comp,d in cfg.iteritems()])

def getfolderinfo(host, token):
 url = "http://%s/config/folders?token=%s" % (host,token)
 return requests.get(url).json()

def findfolders(host, folder_info, tokens, company, searchparams):
 for comp, comp_data in folder_info.iteritems():
 if comp == company:
 print "Searching folders under "+company+" (Token: "+tokens[comp]+")"
 for org, org_data in comp_data.iteritems():
 for folder, folder_data in org_data.iteritems():
 searchandprintresults(host, tokens[comp], comp, org, folder, \
 searchparams)

Figure 7.1. Sample Python Code to search for Audio using GET, Part 1

The major steps in the portion of the Python application shown in Figure 7.1, “Sample Python Code to
search for Audio using GET, Part 1” are the following:

The main function provides a traditional main routine that shows the order in which functions are
called in the application
Check if the right number of command-line arguments have been provided, assign them to
appropriate variables if so and identifying the expected arguments if not.
Uses the /config API to retrieve the company information from the V-Spark installation and build
a dictionary that only contains the company name and associated token information from the host
that was specified on the command-line
Uses the /config/folders API to retrieve the folder-level configuration information from the
host that was specified on the command-line
Initiates the primary loop for the application, which is controlled by the companies that were found in
the information that was retrieved from the host specified on the command-line. Each company has
an associated authorization token (originally stored in the uuid name/value pair), which is the other
field for each company entry in the dictionary that was constructed in the gettokens()function.
The short name for each company is the data item in the company JSON that provides the linkage
between the data from the company and folder sources. This loop then uses this information to
search for organization/folder data that is associated with the company whose name was specified
on the command-line, calling the function that represents the core functionality of this application
(searchandprintresults) for each organization and folder.

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 85

def searchandprintresults(host, token, comp, org, folder, searchparams):

 url = "http://%s/search/%s/%s/%s?token=%s%s" % (host, comp, org, folder, token, searchparams)
 response = requests.get(url)

 if response.status_code == 200:
 print " URL is "+url
 counturl = url+"&output=count"

 countresponse = requests.get(counturl)
 OUTPUT_FILE = comp+"-"+org+"-"+folder+"-search.json"
 print " Writing Matching JSON for "+countresponse.text+" matches to "+OUTPUT_FILE

 target = open(OUTPUT_FILE, 'w')
 data = json.load(urllib2.urlopen(url))
 target.write(json.dumps(data, indent=4, sort_keys=True))
 target.close()

if __name__ == '__main__':
 from sys import argv
 main(argv)

Figure 7.2. Sample Python Code to search for Audio using GET, Part 2

The major steps in the remainder of the Python application, shown in Figure 7.2, “Sample Python Code
to search for Audio using GET, Part 2”, are the following:

Assembles the URL that will be called with the GET method, and then calls that URL.
Tests each folder for audio that matches the search parameters that were specified on the command-
line, and tests the result of the HTTP call to the REST API to determine if the search was successful.
If the search was successful, the application calls the same URL, appending the output=count
parameter in order to retrieve the number of matches found. This number is used in an informative
message.
If the search was successful, the application also saves the matching search results to a file whose
name is made up of the company, organization, and folder in which matching results were found.

The following is an example of executing this application, assuming that the code shown in Figures
Figure 7.1 and Figure 7.2 was concatenated and saved to an executable file named search-get-
searches.py:

./search-get-searches.py example.company.com 1656744ac845cbe185d1a50a0225d7ac \
 DocTestCo '&client_emotion=positive'

Output from executing this application depends on a V-Spark installation: the company that you are
running it against and the folder data that is associated with that company. That output might look
something like the following:

Searching folders under DocTestCo (Token: d457aa9c65a602254e9810c8d08025ad)
 URL is http://example.company.com/search/DocTestCo/DocTestCo-DocTesting/Test01?
token=d457aa9c65a602254e9810c8d08025ad&client_emotion=positive
 Writing Matching JSON for 4 matches to DocTestCo-DocTestCo-DocTesting-Test01-log.json

7.4.2. Using�the�/search�API�via�POST�with�Python
Figures Figure 7.3 and Figure 7.4 show an application with exactly the same functionality as the application
shown in Figures Figure 7.1 and Figure 7.2, but using the /search API's POST method rather than the
GET method that was used in Figures Figure 7.1 and Figure 7.2. In this application a JSON file containing
the /search parameters is passed as a command-line argument rather than the parameters themselves.
As this example shows, reading parameters from a JSON file make it easy to programmatically modify
those parameters if you need to issue the same call in a slightly different fashion.

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

86 Proprietary and Confidential © 2019, Voci Technologies, Inc.

#!/usr/bin/env python
#
Copyright 2017 Voci Technologies, Inc. All rights reserved.
Contains confidential company information.
Unsupported example code - Not for production use.
#

import requests
import json
import urllib2

def usage(argv):
 print "Usage:", argv[0], "<sparkhost:port> <root token> <company> <JSON-params-file>"
 exit(1)

def main(argv):

 if len(argv) != 5: usage(argv)
 host, token, company, searchparamfile = argv[1:]
 tokens = gettokens(host,token)
 folderinfo = getfolderinfo(host,token)
 findfolders(host, folderinfo, tokens, company, searchparamfile)

def gettokens(host, token):
 url = "http://%s/config?token=%s" % (host,token)
 cfg = requests.get(url).json()
 return dict([(comp,d['uuid']) for comp,d in cfg.iteritems()])

def getfolderinfo(host, token):
 url = "http://%s/config/folders?token=%s" % (host,token)
 return requests.get(url).json()

def findfolders(host, folder_info, tokens, company, searchparamfile):
 for comp, comp_data in folder_info.iteritems():
 if comp == company:
 print "Searching folders under "+company+" (Token: "+tokens[comp]+")"
 for org, org_data in comp_data.iteritems():
 for folder, folder_data in org_data.iteritems():
 searchandprintresults(host, tokens[comp], comp, org, folder,
 searchparamfile)

Figure 7.3. Sample Python Code to Search for Audio using POST, Part 1

The major steps in the portion of the Python application shown in Figure 7.3, “Sample Python Code to
Search for Audio using POST, Part 1” are the following:

The main function provides a traditional main routine that shows the order in which functions are
called in the application
Check if the right number of command-line arguments have been provided, assign them to
appropriate variables if so and identifying the expected arguments if not.
Uses the /config API to retrieve the company information from the V-Spark installation and build
a dictionary that only contains the company name and associated token information from the host
that was specified on the command-line
Uses the /config/folders API to retrieve the folder-level configuration information from the
host that was specified on the command-line
Initiates the primary loop for the application, which is controlled by the companies that were found in
the information that was retrieved from the host specified on the command-line. Each company has
an associated authorization token (originally stored in the uuid name/value pair), which is the other
field for each company entry in the dictionary that was constructed in the gettokens()function.
The short name for each company is the data item in the company JSON that provides the linkage
between the data from the company and folder sources. This loop then uses this information to
search for organization/folder data that is associated with the company whose name was specified
on the command-line, calling the function that represents the core functionality of this application
(searchandprintresults) for each organization and folder.

Using the V-Spark 3.5.0 API Chapter 7. Searching V-Spark Data

© 2019, Voci Technologies, Inc. Proprietary and Confidential 87

def searchandprintresults(host, token, comp, org, folder, searchparamfile):
 url = "http://%s/search/%s/%s/%s?token=%s" % (host, comp, org, folder, token)

 with open(searchparamfile) as json_file:
 param_data = json.load(json_file)
 header = {'Content-type': 'application/json'}
 response = requests.post(url, data=json.dumps(param_data), headers=header)

 if response.status_code == 200:
 print " URL is "+url

 param_data["output"] = "count".decode('utf-8')
 countresponse = requests.post(url, data=json.dumps(param_data), headers=header)
 OUTPUT_FILE = comp+"-"+org+"-"+folder+"-post-search.json"
 print " Writing Matching JSON for "+countresponse.text+" matches to "+OUTPUT_FILE

 with open(OUTPUT_FILE, mode='wb') as localfile:
 localfile.write(response.content)
 localfile.close()

if __name__ == '__main__':
 from sys import argv
 main(argv)

Figure 7.4. Sample Python Code to Search for Audio using POST, Part 2

The major steps in the remainder of this sample Python application. shown in Figure 7.4, “Sample Python
Code to Search for Audio using POST, Part 2”, are the following:

Assembles the URL that will be called with the POST method, reads in the JSON file that contains
the parameters with which you want to call the API, sets the correct header value that is required to
identify the type of data that you are passing to the POST call, and then calls that URL.
Tests each folder for audio that matches the search parameters that were specified on the command-
line, and tests the result of the HTTP call to the REST API to determine if the search was successful.
If the search was successful, the application modifies the in-memory representation of the JSON file
to specify that the next call that uses that data will request the number of matching results rather than
the matching data. This number is used in an informative message.
If the search was successful, the application also saves the matching search results to a file whose
name is made up of the company, organization, and folder in which matching results were found.

The following is an example of executing this application, assuming that the code shown in Figures
Figure 7.3 and Figure 7.4 was concatenated and saved to an executable file named search-post-
searches.py:

./search-post-searches.py example.company.com 1656744ac845cbe185d1a50a0225d7ac \
 DocTestCo summary-and-client-emotion.json

Output from executing an application depends on a V-Spark installation: the company that you are running
it against and the folder data that is associated with that company. That output might look something like
the following:

Searching folders under DocTestCo (Token: d457aa9c65a602254e9810c8d08025ad)
 URL is http://example.company.com/search/DocTestCo/DocTestCo-DocTesting/Test01?
token=d457aa9c65a602254e9810c8d08025ad
 Writing Matching JSON for 4 matches to DocTestCo-DocTestCo-DocTesting-Test01-search.json

Chapter 7. Searching V-Spark Data Using the V-Spark 3.5.0 API

88 Proprietary and Confidential

Using the V-Spark 3.5.0 API Chapter 8. Retrieving Folder and Application Statistics Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 89

Chapter�8. Retrieving�Folder�and
Application�Statistics
Information

This section describes V-Spark's APIs that enable you to programmatically check and retrieve folder
statistics (/stats) and statistics for agent application and category scores (/appstats).

8.1. Retrieving�Folder�Statistics
The /stats API enables you to retrieve daily statistics for folders. The next few sections provide
reference information for this API, and examples of calling this API from the Section 8.1.3, “Using the /
stats API with cURL” and Section 8.1.4, “Using the /stats API with Python”.

8.1.1. Reference�for�the�/stats�API
The /stats API enables you to retrieve daily statistics for folders by specifying a date or date range for
which you want to retrieve information. Statistics are returned in JSON format, include call volume and
average call duration, and also includes agent information if calls include agent id metadata.

Synopsis

 GET /stats/CO_SHORT/ORG_SHORT?token=TOKEN&OPTIONS...
 GET /stats/CO_SHORT/ORG_SHORT/FOLDERNAME?token=TOKEN&OPTIONS...

Description

Variables used in the URL of a call to the /stats API are the following:

CO_SHORT The short name of the company whose statistics you would like to retrieve

ORG_SHORT The short name of the organization that you are interested in. Finding that information
is shown in Figure 4.1, “Location of the V-Spark Organization Short Name”.

FOLDERNAME The name of the V-Spark Folder whose statistics you would like to retrieve. If you do
not specify the name of a folder, matching statistics for all folders under the specified
ORG_SHORT will be returned.

TOKEN The V-Spark authorization token that you are using to establish permission to retrieve
information. You can either use the root token for the target V-Spark installation (located
in the file /opt/voci/state/vspark/apitoken) or the authorization token for the company
under which the specified ORG_SHORT is located. Locating a company's authorization
token is shown in Figure 1.1, “Location of a Company Authorization Token”.

Options

The following options can be passed as parameters to calls to the /stats API:

daterange=START-END Enables you to specify a date range for daily stats. The START and END
values are both expressed as YYYYMMDD values, where the year (YYYY)

Chapter 8. Retrieving Folder and Application Statistics Information Using the V-Spark 3.5.0 API

90 Proprietary and Confidential © 2019, Voci Technologies, Inc.

month (MM) and day (DD) values are required. Date ranges are always
assumed to be positive (where START is less than END). No verification is
done to ensure that this is correct. Invalid date ranges will simply return no
values. If START is not specified, the default value is today's date. If END
is not specified, only the start date's stats are returned. If this option is not
specified, today's date is used.

Important

No information is returned for dates in the specified range
that do NOT contain any calls.

Content Types

• GET method returns JSON formatted data with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

8.1.2. Sample�JSON�from�the�/stats�API
Figure 8.1, “Sample Folder Statistics Output from the /stats API” shows an excerpt of the output that is
produced by a call to the /stats API, specifying a folder to which audio files have been uploaded and
processed on a specified date (or the current date if the date parameter was not specified).

[
 {
 "date": "20170925",
 "calls": 5,
 "avgduration": "0:09:52",
 "avgsilence": "0:04:12",
 "avgwords": 1256.6,
 "agent": {
 "avgcalls": "1.7",
 "talk": {
 "avg": "0:02:57",
 "min": {
 "id": "004",
 "duration": "0:00:32"
 },
 "max": {
 "id": "002",
 "duration": "0:09:24"
 }
 },
 "emotion": {
 "positive": 3,
 "worsening": 0,
 "negative": 2,
 "improving": 0
 }
 },
 "client": {
 "talk": {
 "avg": "0:02:43"
 },
 "emotion": {
 "positive": 1,
 "worsening": 0,
 "negative": 3,
 "improving": 1
 }
 }
 }
]

Figure 8.1. Sample Folder Statistics Output from the /stats API

Using the V-Spark 3.5.0 API Chapter 8. Retrieving Folder and Application Statistics Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 91

8.1.3. Using�the�/stats�API�with�cURL
This section discusses how to use the /stats API to retrieve high-level folder statistics information from
a specified V-Spark installation.

If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

An example of a cURL command to retrieve daily stats information from September 25, 2017 (20170925)
from the company "DocTestCo", organization "DocTestCo-DocTesting", folder "Test01" on the host
example.company.com is the following:

curl -s 'http://example.company.com/stats/DocTestCo/DocTestCo-DocTesting/Test01\
 ?token=01234567890123456789012345678901&daterange=20170925'

To produce this output in a pretty-printed form that is more usable, and write that output to the file
stats.json, you could execute a command like the following:

curl -s 'http://example.company.com/stats/DocTestCo/DocTestCo-DocTesting/Test01 \
 ?token=012345678901234567890123456789012&daterange=20170605' | \
 python -m json.tool > stats.json

Tip

The json.tool module that is provided by Python sorts keys in JSON output
alphabetically. If you want to pretty-print JSON output without reorganizing key
values, you may want to use a Python command such as jsonlint, which includes
pretty-printing along with other capabilities and is provided as part of the python-
demjson-1.6-1.el6.noarch package on CentOS systems.

Example output from the previous command would look something like the following:

[
 {
 "date": "20170925",
 "calls": 5,
 "avgduration": "0:09:52",
 "avgsilence": "0:04:12",
 "avgwords": 1256.6,
 "agent": {
 "avgcalls": "1.7",
 "talk": {
 "avg": "0:02:57",
 "min": {
 "id": "004",
 "duration": "0:00:32"
 },
 "max": {
 "id": "002",
 "duration": "0:09:24"
 }
 },
 "emotion": {
 "positive": 3,
 "worsening": 0,
 "negative": 2,
 "improving": 0
 }
 },
 "client": {
 "talk": {
 "avg": "0:02:43"
 },
 "emotion": {

Chapter 8. Retrieving Folder and Application Statistics Information Using the V-Spark 3.5.0 API

92 Proprietary and Confidential © 2019, Voci Technologies, Inc.

 "positive": 1,
 "worsening": 0,
 "negative": 3,
 "improving": 1
 }
 }
 }
]

8.1.4. Using�the�/stats�API�with�Python
Figure 8.2, “Sample Python Code for Retrieving Folder Statistics from the /stats API” shows a generic
Python application that can be used to call any V-Spark API. While you will probably want to develop
more specialized Python applications to use specific V-Spark APIs directly, this sample code shows the
basic mechanisms that make it easy to interact with the /stats API from Python. This sample application
enables you to pass both the API that you want to call and the parameters that you want to provide. In this
case, the parameter is the date or the date range that you want to retrieve statistics for, based on the folder
that is specified in the previous argument.

The arguments to the sample application shown in Figure 8.2 are the following:

HOST The name of the host that is running V-Spark

TOKEN The V-Spark authorization token that you are using to establish permission to retrieve
information. You can either use the root token for the target V-Spark installation
(located in the file /opt/voci/state/vspark/apitoken) or the authorization
token for the company that is associated with the application that you are working
with. Locating a company's authorization token is shown in Figure 1.1, “Location of
a Company Authorization Token”.

API_TO_CALL The API that you want to call, along with the CO_SHORT, ORG_SHORT, and FOLDER
about which you want to retrieve statistics

PARAMS the parameters that you want to pass to your call to the stats API. For this sample
application, the parameters that you pass should be enclosed within single quotation
marks so that the command shell does not attempt to interpret them.

Using the V-Spark 3.5.0 API Chapter 8. Retrieving Folder and Application Statistics Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 93

#!/usr/bin/env python

import sys
import json
import urllib2
import string

default values
PROTOCOL = "http://"
PORT = "3000"

if (len(sys.argv) != 5):
 print " Usage:", sys.argv[0], "HOST ROOT_TOKEN API_TO_CALL PARAMS"
 sys.exit(-1)
else:
 # get cmdline params

 HOST, ROOT_TOKEN, API_TO_CALL, PARAMS = sys.argv[1:]

Define the URL in a single variable for JSON load
url = "%s%s:%s%s?token=%s&%s" % (PROTOCOL, HOST, PORT, API_TO_CALL, ROOT_TOKEN, PARAMS)

To get output data, return a Python object and dump it to a string that is a
JSON representation of that object. Complain and exit if the call fails.

try:
 data = json.load(urllib2.urlopen(url))
except urllib2.HTTPError, error:
 print ' Error: HTTP message: ', error.msg, ' HTTP return code: ', str(error.code)
 sys.exit(-1)

Sanitize URL and params for use in creating output file name

tmp_str = string.replace(
 string.replace(
 string.replace(
 string.replace(API_TO_CALL+"_"+PARAMS+".json", '/', '_'), '&', '_'), '?', '_'), '%20', '_')
target = open(tmp_str[1:], 'w')

target.write(json.dumps(data, indent=4, sort_keys=True))
target.close()
print " Output written to: "+tmp_str[1:]

Figure 8.2. Sample Python Code for Retrieving Folder Statistics from the /stats API

The core functionality of this application is the following:

If the previous test showed that the right number of command-line arguments were provided, assign
the command-line arguments to the relevant variables
Assemble the URL that you want to call from the parameters that were supplied on the command-
line and a few internal default settings
Make the API call using the URL that you assembled, convert the object that it returned into JSON,
and catch any exception that is returned. If an exception was raised, display the associated HTTP
error message and status code that was returned before exiting,
Build the name of the output file to which you want to write the JSON that was returned by the
API call. This code is present to avoid constructing filenames which contain special characters that
have other implications on a Linux system. Note that when this output file name is used in the
following open() statement, the first character in its name is skipped because that character is a
safe conversion of the leading '/' in the name of the API.
Write the JSON object to the output file to which you want to write the JSON that was returned by the
API call, using standard formatting parameters like indenting each entry by four spaces and sorting
the entries by key. These enable a Python application to produce output that is already pretty-printed.

An example of executing this application is the following:

statistics-get-info.py HOST TOKEN /stats/DocTestCo/DocTestCo-DocTesting/Test01 \
 '&daterange=20170901-20171015'

Chapter 8. Retrieving Folder and Application Statistics Information Using the V-Spark 3.5.0 API

94 Proprietary and Confidential © 2019, Voci Technologies, Inc.

This call to the example function would retrieve statistics about activity
in the folder DocTestCo/DocTestCo-DocTesting/Test01, for the date range
20170901-20171011 and write it to an output file named stats_DocTestCo_DocTestCo-
DocTesting_Test01_daterange=20170901-20171011.json.

Sample output from this call would look like the following:

[
 {
 "agent": {
 "avgcalls": "4.0",
 "emotion": {
 "improving": 4,
 "negative": 0,
 "positive": 0,
 "worsening": 0
 },
 "talk": {
 "avg": "0:02:11",
 "max": {
 "duration": "0:08:44",
 "id": "105"
 },
 "min": {
 "duration": "0:08:44",
 "id": "105"
 }
 }
 },
 "avgduration": "0:05:25",
 "avgsilence": "0:02:16",
 "avgwords": "643.0",
 "calls": 4,
 "client": {
 "emotion": {
 "improving": 0,
 "negative": 4,
 "positive": 0,
 "worsening": 0
 },
 "talk": {
 "avg": "0:00:58"
 }
 },
 },
 "date": "20170925"
 },...
 }
]

This sample output has been abbreviated to save space.

8.2. Retrieving�Agent�Application�Statistics�and
Category�Scores

The /appstats API enables you to retrieve daily statistics for agent application and category scores.
The next few sections provide reference information for this API, and examples of calling this API from
the Section 8.2.3, “Using the /appstats API with cURL” and Section 8.2.4, “Using the /appstats API with
Python”.

8.2.1. Reference�for�the�/appstats�API
The /appstats API enables you to retrieve daily statistics for agent application and category scores.
These statistics are returned in JSON format.

A number of optional parameters are available to enable you to retrieve specific category scores or a select
group of agent scores.

Using the V-Spark 3.5.0 API Chapter 8. Retrieving Folder and Application Statistics Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 95

Synopsis

GET /appstats/CO_SHORT/ORG_SHORT/APPNAME?token=TOKEN&OPTIONS...
GET /appstats/CO_SHORT/ORG_SHORT/APPNAME/FOLDERNAME?token=TOKEN&OPTIONS...

Description

Variables used in a call to the /appstats API are the following:

CO_SHORT The short name of the company whose statistics you would like to retrieve

ORG_SHORT The short name of the organization that you are interested in. Finding that information
is shown in Figure 4.1, “Location of the V-Spark Organization Short Name”.

APPNAME The name of the V-Spark application whose agent scores you would like to retrieve.

FOLDERNAME The name of the V-Spark Folder whose statistics you would like to retrieve

TOKEN The V-Spark authorization token that you are using to establish permission to retrieve
information. You can either use the root token for the target V-Spark installation (located
in the file /opt/voci/state/vspark/apitoken) or the authorization token for the company
under which the specified ORG_SHORT is located. Locating a company's authorization
token is shown in Figure 1.1, “Location of a Company Authorization Token”.

Options

daterange=START-END Enables you to specify a date range for daily stats. The START and END
values, though optional, are both expressed as YYYYMMDD values where
the year (YYYY) month (MM) and day (DD) values are required. Date ranges
are always assumed to be positive (where START is less than END). No
verification is done to ensure that this is correct. Invalid date ranges will
simply return no values. If START is not specified, the default value is
today's date. If END is not specified, the start date is used, and only 1 day
of stats will be returned.

Important

No information is returned for dates in the specified range
that do NOT contain any calls.

category=CATEGORY Enables you to return Agent Stats for a particular category. To specify
a lower-level category, specify CATEGORY as a string that contains the
full "path" to the lower-level category, as a period-separated list. For
example, if querying an app that uses the Agent Scorecard template, a
valid category name would be Communication Skills.Client
Informed. Querying a particular category will always also return scores
for the category's upper levels.

depth=DEPTH Enables you to specify how many lower level categories you would like
to return in results:

0 Return only the level of the category specified. This is the default
value if the category option is specified.

n Where n is a positive non-zero integer, return the specified number
of lower levels of the category

Chapter 8. Retrieving Folder and Application Statistics Information Using the V-Spark 3.5.0 API

96 Proprietary and Confidential © 2019, Voci Technologies, Inc.

-1 Return all levels of category stats This is the default value if no
category option is specified.

agents=AGENTID Enables you to specify the agent(s) for which to retrieve scores. If you want
to retrieve scores for more than one agent, separate the AGENTIDs with
commas. For example:

agents=348,227,042

zeros Whether or not to include in the JSON that is returned categories for which
the agent did not receive any score.

Note

This parameter refers to returning zero scores for
CATEGORIES. If a date in the specified daterange does
not contain any calls, no scores of any sort will be returned
for that date.

true Include categories in which the agent did not score, and report
the score for that category as zero.

false Exclude (from the JSON that is returned) categories in which the
agent did not receive a score.

Content Types

• GET method returns JSON formatted data with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

8.2.2. Sample�JSON�from�the�/appstats�API
Figure 8.3, “Sample Application Statistics and Category Score Output from the /appstats API” shows an
excerpt of the output that is produced by a call to the /appstats API, specifying an application that has
been run against audio files have been processed or reprocessed on a specified date (or the current date
if the date parameter was not specified).

Using the V-Spark 3.5.0 API Chapter 8. Retrieving Folder and Application Statistics Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 97

[
 {
 "date": "20170925",
 "agents": 3,
 "001": {
 "calls": 1,
 "overall": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.2890",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },
 "Communication Skills": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.5667",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },
 "Effectiveness": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.4000",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },...
 },...
 }
]

Figure 8.3. Sample Application Statistics and Category Score Output from the /
appstats API

8.2.3. Using�the�/appstats�API�with�cURL
This topic discusses how to retrieve application statistics information from a V-Spark installation. For
each agent, the output returns the number of calls the agent had and the overall app scores, along with any
category scores that were specified using category and depth parameters.

See the Using the Agents View section of the "V-Spark 3.5.0 Management Guide" for more information
about the category statistics that are returned.

If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

An example of a cURL command to retrieve application scores from the Agent ScoreCard application
on September 25, 2017, which is associated with the company "DocTestCo" and organization "DocTestCo-
DocTesting" on the host example.company.com is the following:

curl -s 'http://example.company.com/appstats/DocTestCo/DocTestCo-DocTesting/Agent%20Scorecard \
 ?token=01234567890123456789012345678901&daterange=20170925'

The format of the JSON output that is returned by this call is the following:

[
 {
 "date": "20170925",
 "agents": 3,
 "001": {
 "calls": 1,
 "overall": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.2890",
 "duration": "0:11:55",
 "silence": "0:03:13"

Chapter 8. Retrieving Folder and Application Statistics Information Using the V-Spark 3.5.0 API

98 Proprietary and Confidential © 2019, Voci Technologies, Inc.

 },
 "Communication Skills": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.5667",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },
 "Effectiveness": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.4000",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },...
 },...
 }
]

The contents of this example have been abbreviated to save space. Each matching agent is identified
numerically (001 in the previous example), with each category for which scores are available listed under
the call identifier.

An example of a cURL command to retrieve category scores for the Communication
Skills.Client Informed category from the Agent ScoreCard application on September 25,
2017, which is associated with the company "DocTestCo" and organization "DocTestCo-DocTesting" on
the host example.company.com is the following:

curl -s 'http://example.company.com/appstats/DocTestCo/DocTestCo-DocTesting/Agent%20Scorecard\
 ?token=01234567890123456789012345678901&daterange=20170925\
 &category=Communication%20Skills.Client%20Informed&depth=1'

As mentioned earlier, requesting category information for a subcategory also returns information about
its parent categories. In this example, requesting scores for Communication Skills.Client
Informed automatically also returns scores for the Communication Skills category. Since a depth
of "1" is specified, the call also returns the specified number of lower levels of the Client Informed
category. In this case, there is only one such lower-level category: Communication Skills.Client
Informed.Agent Actions.

The format of the JSON output that is returned by this call is the following:

[
 {
 "date": "20170925",
 "agents": 3,
 "001": {
 "calls": 1,
 "overall": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.2890",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },
 "Communication Skills": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.5667",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },
 "Communication Skills.Client Informed": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "0.3333",
 "duration": "0:11:55",
 "silence": "0:03:13"
 },
 "Communication Skills.Client Informed.Agent Actions": {
 "ncalls": 1,
 "hitmiss": "1.0000",
 "coverage": "1.0000",

Using the V-Spark 3.5.0 API Chapter 8. Retrieving Folder and Application Statistics Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 99

 "duration": "0:11:55",
 "silence": "0:03:13"
 }
 }, ...
 }
]

You can further refine the output of a call to the /appstats API by restricting the category to a lower-
level one that does not contain subcategories, as in the following example:

statistics-get-info.py HOST TOKEN \
 /appstats/DocTestCo/DocTestCo-DocTesting/Clone%20Test%2002 \
 'daterange=20171005&category=Politeness'

This call uses the daterange parameter to limit results to those from files processed on a single date
(05 Oct 2017), and only lists specific and summary (overall) information about the category,
Politeness, which has no subcategories:

[
 {
 "105": {
 "Politeness": {
 "coverage": "0.5714",
 "duration": "0:05:25",
 "hitmiss": "1.0000",
 "ncalls": 19,
 "silence": "0:02:19"
 },
 "calls": 19,
 "overall": {
 "coverage": "0.3293",
 "duration": "0:05:25",
 "hitmiss": "1.0000",
 "ncalls": 19,
 "silence": "0:02:19"
 }
 },
 "agents": 1,
 "date": "20171005"
 }
]

8.2.4. Using�the�/appstats�API�with�Python
The same Python example that was provided for calling the /stats API, Figure 8.2, “Sample Python
Code for Retrieving Folder Statistics from the /stats API”, can also be used to call the /appstats API.
This generic Python application can be used to call any V-Spark API. While you will probably want
to develop more specialized Python applications to use specific V-Spark APIs directly, the sample code
shows the basic mechanisms that make it easy to interact with the /appstats API from Python.

The sample application provided in Figure 8.2 enables you to specify both the API that you want to call
and the parameters that you want to provide as arguments to the Python code. In this case, the parameters
are the daterange that you want to retrieve statistics for and other refinements on matching output, based
on the application that is specified as the previous argument.

An example of executing this application is the following:

statistics-get-info.py HOST TOKEN \
 /appstats/DocTestCo/DocTestCo-DocTesting/Clone%20Test%2001 \
 daterange=20170901-20171015

This call to the example function would retrieve statistics about activity for the application Clone Test
01 that is associated with folders within the company and organization DocTestCo/DocTestCo-
DocTesting, for the date range 20170901-20171011.

Chapter 8. Retrieving Folder and Application Statistics Information Using the V-Spark 3.5.0 API

100 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Sample output from this call would look like the following:

[
 {
 "105": {
 "Communication Skills": {
 "coverage": "0.5250",
 "duration": "0:05:25",
 "hitmiss": "1.0000",
 "ncalls": 2,
 "silence": "0:02:19"
 },
 "Communication Skills.Ask for Call Reason": {
 "coverage": "1.0000",
 "duration": "0:05:25",
 "hitmiss": "1.0000",
 "ncalls": 2,
 "silence": "0:02:19"
 },
 "Communication Skills.Client Informed": {
 "coverage": "1.0000",
 "duration": "0:05:25",
 "hitmiss": "1.0000",
 "ncalls": 2,
 "silence": "0:02:19"
 },
 "Communication Skills.Client Informed.Agent Actions": {
 "coverage": "1.0000",
 "duration": "0:05:25",
 "hitmiss": "1.0000",
 "ncalls": 2,
 "silence": "0:02:19"
 },
 ...
 },
 "agents": 1,
 "date": "20171002"
 },...
]

To see how to call the /appstats API, retrieve the output from a call to the API, and write the JSON
output to a file, see the sample Python code that is provided in Figure 8.2. The core functionality of the
primary steps in this sample application are explained after the sample code is presented.

Using the V-Spark 3.5.0 API Chapter 9. Configuring V-Spark Applications

© 2019, Voci Technologies, Inc. Proprietary and Confidential 101

Chapter�9. Configuring�V-Spark
Applications

V-Spark applications are customizable analytics tools that are associated with one or more folders. When
using the V-Spark GUI, you can download the JSON configuration data that is associated with a custom
application by visiting the Settings menu's Applications page and selecting the Application Editor button
to the right of the application that you want to edit. This displays the Application Editor dialog, which
provides Download and Upload buttons in the upper right-hand corner. You can download the JSON for
your custom application for archival purposes, or modify it using your favorite text editor and re-upload
the updated file to integrate your improvements.

The /appedit API provides a programmatic mechanism for retrieving the category configuration of a
custom application in JSON format. You can then make any modifications that you want to the JSON
text which describes the configuration of that application and re-upload it to incorporate those changes
into the V-Spark.

9.1. Reference�for�the�/appedit�API
The /appedit API enables you to retrieve the category/phrase configuration of a custom application for
archival purposes, or so that you can modify it using an external editor. You can then upload the modified
application for use within V-Spark.

Synopsis

 GET /appedit/CO_SHORT/ORG_SHORT/APPNAME?token=TOKEN
 POST /appedit/CO_SHORT/ORG_SHORT/APPNAME?token=TOKEN

Description

The variables used in a call to the /appedit API are the following:

CO_SHORT The short name of the company whose category configuration you would like to retrieve
or upload

ORG_SHORT The short name of the organization that you are interested in. Finding that information is
shown in Figure 4.1, “Location of the V-Spark Organization Short Name”.

APPNAME The name of the V-Spark application whose category configuration you would like to
retrieve or upload

TOKEN The V-Spark authorization token that you are using to establish permission to retrieve
information. You can either use the root token for the target V-Spark installation (located
in the file /opt/voci/state/vspark/apitoken) or the authorization token for
the company under which the specified ORG_SHORTj is located. Locating a company's
authorization token is shown in Figure 1.1, “Location of a Company Authorization
Token”.

Content Types

• POST method expects to receive JSON with the "application/json" MIME type

Chapter 9. Configuring V-Spark Applications Using the V-Spark 3.5.0 API

102 Proprietary and Confidential © 2019, Voci Technologies, Inc.

• GET method returns JSON formatted data with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

9.2. Using�the�/appedit�API�with�cURL
If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

Application category configurations can be retrieved and updated using the /appedit API. The
following examples demonstrates saving an application's category configuration to a JSON file so that it
can be edited, either manually or programmatically, and then updated.

For more information about application category configuration, see the "Upload and Download an
Application Config" section of the "V-Spark 3.5.0 Application Development Guide".

Application category configurations can be retrieved using a GET call to the /appedit API. The
following command demonstrates retrieving the configuration of an application named "AppEdit Test",
located under the Technologies company, in the Technologies-RD organization. The JSON that
is retrieved is written to a JSON file named AppEdit-Test.json:

curl -s "http://example.company.com/appedit/Technologies/Technologies-RD/AppEdit%20Test?token=TOKEN" >
 AppEdit-Test.json

Note

Because the names of applications can contain spaces, you must URL-encode each space in
the name of an application by replacing it with %20.

Application category configurations can be updated using a POST call to the /appedit API. The
configuration contain the entire application and therefore require every category to be present in order to
preserve that structure. You can not POST a configuration for only one category at a time.

The following command demonstrates uploading the configuration of an application named AppEdit
Test, located under the Technologies company, in the Technologies-RD organization, from the
JSON file AppEdit-Upd.json:

curl -s -X POST -H "Content-Type:application/json" --data @AppEdit-Upd.json \
 "http://example.company.com/appedit/Technologies/Technologies-RD/AppEdit%20Test?token=TOKEN"

When using cURL and a command like this one to POST data to a host, the information about the protocol,
host, and port should also include the required token parameter that ensures that you have rights to
access the V-Spark installation to upload information.

You must also use the following cURL options:

-X Identifies the request method to use (POST) when communicating with the target HTTP server

-H Identifies the type of content that you are sending ("Content-Type:application/json").

-d Identifies the data that you are sending to the HTTP server. File names must be preceded by an @
symbol. You can also use the - symbol after an @ symbol to indicate that the data to send to the HTTP

Using the V-Spark 3.5.0 API Chapter 9. Configuring V-Spark Applications

© 2019, Voci Technologies, Inc. Proprietary and Confidential 103

server will be coming from standard input on your system (such as when a cURL POST command
uses a pipe to receive data from another application).

The cURL command's -s command-line argument is optional, causing the cURL command to run in
silent mode, where it does not display progress information or error messages.

9.2.1. Creating�and�Populating�an�Application�Using�cURL
While the /appedit API only enables you to download or upload the configuration of an existing
application, you can combine JSON configuration data and calls to the /config/apps, /appedit,
and /config/folders APIs to create an application, upload its configuration, and associate it with
a folder. Figure 9.1, “Sample JSON that defines an Application” shows sample JSON for an application
named New AppEdit Test.

{
 "Technologies": {
 "Technologies-RD": {
 "New AppEdit Test": {
 "created": "2017-10-10",
 "defaultscoretype": "Hit/Miss",
 "enabled": "on",
 "folders": [
 "AutoTests"
],
 "template": "custom"
 }
 }
 }
}

Figure 9.1. Sample JSON that defines an Application

When programmatically creating an application, populating it, and binding it to a folder, you must create
the application before you can do either of the other two tasks. Figure 9.2, “Sample JSON that Associates
an Application with a Folder” shows the JSON that associates a folder with the application that was defined
in Figure 9.1, “Sample JSON that defines an Application”.

{
 "Technologies": {
 "Technologies-RD": {
 "AutoTests": {
 "apps": [
 "New AppEdit Test"
],
 "custom_meta": [],
 "modelchan0": "eng1:callcenter",
 "modelchan1": "spa1:callcenter",
 "nspeakers": 2,
 "servers": [
 "asrsrvr1",
 "asrsrvr8"
]
 }
 }
 }
}

Figure 9.2. Sample JSON that Associates an Application with a Folder

Figure 9.3, “Sample JSON for an Application” shows an abbreviated version of the JSON configuration
of an application.

Chapter 9. Configuring V-Spark Applications Using the V-Spark 3.5.0 API

104 Proprietary and Confidential © 2019, Voci Technologies, Inc.

{
 "Sample Top Level Category": {
 "phrases": {
 "+": {
 "all": [
 "phrase usually found in all calls of this category"
]
 },
 "-": {
 "all": [
 "phrase that shouldn't occur in calls of this category"
]
 }
 },
 "subcategories": {
 "Sample 2nd Level Category": {
 ...
 },
 "Sample 2nd Level Leaf Category": {
 ...
 }
 }
 },
 "Sample Top Level Leaf Category": {
 "phrases": {
 ...
 },
 "subcategories": {}
 }
}

Figure 9.3. Sample JSON for an Application

Once you have JSON that provides information about these three aspects of an application, you can create
the application, bind it to a folder, and define its configuration with three cURL calls like the following:

curl -s -X POST -H "Content-Type:application/json" \
 "http://example.company.com/config/apps?token=566af08d0d6ca7436c9117f09571cadc" \
 --data @app-definition.json

curl -s -X POST -H "Content-Type:application/json" \
 "http:///example.company.com/config/folders?token=566af08d0d6ca7436c9117f09571cadc" \
 --data @app-folder-binding.json

curl -s -X POST -H "Content-Type:application/json" \
 "http:///example.company.com/appedit/Technologies/Technologies-RD/AppEdit%20Test?
token=566af08d0d6ca7436c9117f09571cadc" \
 --data @app-configuration-sample.json

The cURL commands in this example, respectively:

1. Call the /config/apps API to create the application, using the contents of the file app-
definition.json, which is shown in Figure 9.1.

2. Call the /config/folders API to associate the new application with a specified folder, using the
contents of the file app-folder-binding.json, which is shown in Figure 9.2.

3. Call the /appedit API to upload the configuration of the application, using the contents of the file
app-configuration-sample.json, which is shown in Figure 9.3.

While cURL provides a quick way to use and test REST APIs and shell scripts are a quick and convenient
way of automating many tasks, it is typically faster in the long run to call APIs from applications. The next
topic discusses how to use the /appedit API from within applications that are written in the popular
Python programming language.

Using the V-Spark 3.5.0 API Chapter 9. Configuring V-Spark Applications

© 2019, Voci Technologies, Inc. Proprietary and Confidential 105

9.3. Using�the�/appedit�API�with�Python
Figure 9.4, “Sample Python Application for POST'ing JSON to APIs” shows a generic Python application
that can be used to call any V-Spark API. While you will probably want to develop more specialized
Python applications to use specific V-Spark APIs directly, this sample code shows the basic mechanisms
that make it easy to interact with the V-Spark APIs from Python.

The arguments to the sample application shown in Figure 9.4 are the following:

HOST The name of the host that is running V-Spark

TOKEN The V-Spark authorization token that you are using to establish permission to
retrieve information. You can either use the root token for the target V-Spark
installation (located in the file /opt/voci/state/vspark/apitoken) or
the authorization token for the company that is associated with the application
that you are working with. Locating a company's authorization token is shown in
Figure 1.1, “Location of a Company Authorization Token”.

API_TO_CALL The API to which you want to POST the JSON input

INPUT_JSON_FILE The JSON file that contains the data that you want to post. If the JSON file is not
in the current directory, you must specify a full or relative path to the file.

#!/usr/bin/env python

import sys
import json
import requests

default values
PROTOCOL = "http://"
PORT = "3000"

if (len(sys.argv) != 5):
 print " Usage:", sys.argv[0], "HOST ROOT_TOKEN API_TO_CALL INPUT_JSON_FILE"
 sys.exit(-1)
else:
 HOST, ROOT_TOKEN, API_TO_CALL, INPUT_JSON_FILE = sys.argv[1:]

Define the URL in a single variable for JSON load
url = "%s%s:%s%s?token=%s" % (PROTOCOL, HOST, PORT, API_TO_CALL, ROOT_TOKEN)

print "POST'ing data from " + INPUT_JSON_FILE + " to" + API_TO_CALL
with open(INPUT_JSON_FILE) as json_file:
 json_data = json.load(json_file)
headers = {'Content-type': 'application/json'}
response = requests.post(url, headers=headers, data=json.dumps(json_data))
if response.status_code != 200:
 print ' HTTP message: ', response.reason, ' HTTP return code: ', str(response.status_code)

Figure 9.4. Sample Python Application for POST'ing JSON to APIs

To perform the same activity as the cURL commands in the previous section and re-use the sample JSON
files that were shown in Section 9.2, “Using the /appedit API with cURL” , you could call this application
(saved as the file post-json.py) three times:

1. post-json.py host token /config/apps app-create.json

Calls the /config/apps API to create the application that is specified in the JSON shown in
Figure 9.1, “Sample JSON that defines an Application”.

2. post-json.py host token \
 /appedit/Technologies/Technologies-RD/New%20AppEdit%20Test appedit-sample.json

Chapter 9. Configuring V-Spark Applications Using the V-Spark 3.5.0 API

106 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Calls the /appedit API to upload the configuration for the application /Technologies/
Technologies-RD/New%20AppEdit%20Test from the JSON file shown in Figure 9.3,
“Sample JSON for an Application”.

3. post-json.py host token /config/folders app-folder-associate.json

Calls the /config/folders API to associate the application with the folder identified in the JSON
shown in Figure 9.2, “Sample JSON that Associates an Application with a Folder”.

Using the V-Spark 3.5.0 API Chapter 10. Retrieving System Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 107

Chapter�10. Retrieving�System
Information

The /sysinfo API provides a programmatic mechanism for retrieving (in JSON format) the status and
configuration of the V-Spark host and version levels of installed Voci software.

10.1. Reference�for�the�/sysinfo�API
The /sysinfo API enables you to retrieve system status, system configuration, and software version
information from the running V-Spark server. The information is returned in JSON format, and can be
saved for archival purposes or transmitted to Voci support for diagnostic use.

Synopsis

 GET /sysinfo
 GET /sysinfo?full

Description

The call returns basic system information. Using the "full" option returns extended system information.

When calling this API, you must provide the root authorization token, which proves that you are authorized
to perform system administration operations. For information about the authorization tokens that you can
provide for use with the V-Spark API, see Section 1.2, “V-Spark API Permission Requirements”.

Content Types

• GET method returns JSON formatted data with the "text/html" MIME type

• Errors will be returned with the "text/html" MIME type

10.2. Sample�JSON�from�the�/sysinfo�API
Figure 10.1, “Sample Basic System Output from the /sysinfo API” shows an excerpt of the JSON
output that is produced by a basic call to the /sysinfo API.

Chapter 10. Retrieving System Information Using the V-Spark 3.5.0 API

108 Proprietary and Confidential © 2019, Voci Technologies, Inc.

 {
 "uname": "Linux analysis 2.6.32-696.30.1.el6.x86_64 #1 SMP Tue May 22 03:28:18 UTC 2018 x86_64
 x86_64 x86_64 GNU/Linux",
 "uptime": "13:39:05 up 8 days, 3:14, 1 user, load average: 0.02, 0.07, 0.16",
 "hostname": "analysis",
 "mysql": {
 "version": "5.1.73",
 "uptime": "702822"
 },
 "elasticsearch": {
 "uptime": [
 "name uptime",
 "JtDxLLr 1d"
],
 "version": "5.3.0"
 },
 "vspark": {
 "started": "2018-07-12 12:22:19 -04:00",
 "version": "3.4.3-1"
 },
 "jobmgr": {
 "started": "2018-07-12 12:22:28 -04:00",
 "version": "2.3.1-1"
 },
 "product": "V-Spark"
 }

Figure 10.1. Sample Basic System Output from the /sysinfo API

The fields in the JSON output are described as follows:

cpuinfo (full) Information about the CPU architecture.

 "cpuinfo": [
 "Architecture: x86_64",
 "CPU op-mode(s): 32-bit, 64-bit",
 "Byte Order: Little Endian",
 "CPU(s): 12",
 "On-line CPU(s) list: 0-11",
 "Thread(s) per core: 1",
 "Core(s) per socket: 12",
 "Socket(s): 1",
 "NUMA node(s): 1",
 "Vendor ID: GenuineIntel",
 "CPU family: 6",
 "Model: 45",
 "Model name: Intel(R) Xeon(R) CPU E5-2670 0 @
 2.60GHz",
 "Stepping: 7",
 "CPU MHz: 2593.718",
 "BogoMIPS: 5187.43",
 "Hypervisor vendor: KVM",
 "Virtualization type: full",
 "L1d cache: 32K",
 "L1i cache: 32K",
 "L2 cache: 256K",
 "L3 cache: 20480K",
 "NUMA node0 CPU(s): 0-11"
],

meminfo (full) A report of the free and used amounts of system memory, in
mebibytes.

 "meminfo": [
 "total used free shared buffers
 cached",
 "Mem: 19988 11184 8803 6
 191 3925",
 "-/+ buffers/cache: 7067 12920",
 "Swap: 8039 0 8039"
],

Using the V-Spark 3.5.0 API Chapter 10. Retrieving System Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 109

storage (full) A report of disk usage on the main system disk, in human-readable
format.

 "storage": [
 "Filesystem Size Used Avail Use% Mounted on",
 "/dev/mapper/vg_analysis-lv_root",
 " 50G 12G 36G 25% /",
 "tmpfs 9.8G 6.0M 9.8G 1% /dev/shm",
 "/dev/sda1 477M 75M 377M 17% /boot",
 "/dev/mapper/vg_analysis-lv_home",
 " 69G 36G 29G 56% /home"
],

elasticsearch (basic, full) The release version and status information for the Elasticsearch
process.

Sample basic output:

 "elasticsearch": {
 "uptime": [
 "name uptime",
 "JtDxLLr 1d"
],
 "version": "5.3.0"
 },

Sample full output:

 "elasticsearch": {
 "info": {
 "name": "JtDxLLr",
 "cluster_name": "elasticsearch",
 "cluster_uuid": "J7jYjVfwQXWzyBDixJUDZw",
 "version": {
 "build_hash": "3adb13b",
 "build_date": "2017-03-23T03:31:50.652Z",
 "build_snapshot": false,
 "lucene_version": "6.4.1"
 },
 "tagline": "You Know, for Search"
 },
 "uptime": [
 "name uptime",
 "JtDxLLr 1d"
],
 "health": {
 "cluster_name": "elasticsearch",
 "status": "yellow",
 "timed_out": false,
 "number_of_nodes": 1,
 "number_of_data_nodes": 1,
 "active_primary_shards": 5,
 "active_shards": 5,
 "relocating_shards": 0,
 "initializing_shards": 0,
 "unassigned_shards": 5,
 "delayed_unassigned_shards": 0,
 "number_of_pending_tasks": 0,
 "number_of_in_flight_fetch": 0,
 "task_max_waiting_in_queue_millis": 0,
 "active_shards_percent_as_number": 50
 },
 "indices": [
 "health status index uuid
 pri rep docs.count docs.deleted store.size pri.store.size",
 "yellow open product_20180525143400
 unyWynDvQsWMdf8b_cqBGA 5 1 9519021 1692025 5gb
 5gb"
],
 "count": 126213,
 "version": "5.3.0"
 },

Chapter 10. Retrieving System Information Using the V-Spark 3.5.0 API

110 Proprietary and Confidential © 2019, Voci Technologies, Inc.

vspark (basic, full) The release version and start time of the V-Spark server process.

 "vspark": {
 "started": "2018-07-12 12:22:19 -04:00",
 "version": "3.4.3-1"
 },

uname (basic, full) The contents of this field are the same as the output of the
UNIX uname -a command: the operating system kernel name, the
network node hostname (in this case "analysis"), the release level
of the kernel, the version number of the kernel, the server's machine
hardware name, the processor type of the server, the hardware
platform of the server, and the name of the operating system.

 "uname": "Linux analysis 2.6.32-696.30.1.el6.x86_64 #1 SMP Tue May
 22 03:28:18 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux",

uptime (basic, full) The contents of this field are the same as the output of the UNIX
uptime command on the remote server: the current time, how long
the system has been running, how many users are currently logged
on, and the system load averages for the past 1, 5, and 15 minutes.

 "uptime": "13:34:30 up 8 days, 3:10, 1 user, load average: 0.03,
 0.11, 0.21",

hostname (basic, full) The hostname of the server, in this case analysis.

 "hostname": "analysis",

jobmgr (basic, full) The release version and start time of the job manager process.

 "jobmgr": {
 "started": "2018-07-12 12:22:28 -04:00",
 "version": "2.3.1-1"
 },

mysql (basic, full) The release version and status information for the mySQL database
process.

Sample basic output:

 "mysql": {
 "version": "5.1.73",
 "uptime": "702822"
 },

Sample full output:

 "mysql": {
 "version": "5.1.73",
 "status": {
 "queries": "38451876",
 "slow_queries": "3",
 "qps": "54.73",
 "rows_deleted": "146527",
 "rows_inserted": "122535",
 "rows_read": "256090844",
 "rows_updated": "11143",
 "bps_in": "26918.02",

Using the V-Spark 3.5.0 API Chapter 10. Retrieving System Information

© 2019, Voci Technologies, Inc. Proprietary and Confidential 111

 "bps_out": "77637.79",
 "threads_connected": "48",
 "threads_cached": "0",
 "threads_running": "1"
 },
 "uptime": "702547"
 },

vociprocs (full) The number of V-Spark-related processes running on the system.

 "vociprocs": "416",

procinfo (full) The uptime and load averages of the server host, and the task and
CPU states of its primary CPU.

 "procinfo": [
 "Tasks: 708 total, 3 running, 705 sleeping, 0
 stopped, 0 zombie",
 "Cpu(s): 1.2%us, 0.4%sy, 0.0%ni, 98.4%id, 0.0%wa,
 0.0%hi, 0.1%si, 0.0%st"
],

vocirpms (full) The results of an RPM package manager query for all installed Voci
software packages.

 "vocirpms": [
 "voci-jobmanager-2.3.1-1.x86_64",
 "voci-server-client-5.4.5-1.x86_64",
 "voci-pyrequests-2.7.0-1.x86_64",
 "voci-user-1.0.0-1.x86_64",
 "voci-nltk-2.0.1rc1-1.x86_64",
 "voci-spark-cluster-3.4.3-1.x86_64",
 "voci-spark-sums-3.4.3-1.x86_64",
 "voci-webapi-2.0.0-1.x86_64",
 "voci-spark-all-3.4.3-1.x86_64",
 "voci-python-2.7.13-1.x86_64",
 "voci-rrdtool-1.4.7-1.x86_64",
 "voci-server-setup-min-1.0.2-1.x86_64",
 "voci-xmltodict-1.0.0-1.x86_64",
 "voci-server-sparklicense-1.2.2-2.x86_64",
 "voci-spark-search-3.4.3-1.x86_64",
 "voci-spark-backend-3.4.3-1.x86_64",
 "voci-spark-service-3.4.3-1.x86_64",
 "voci-python-scipy-1.1.0-1.x86_64",
 "voci-python-numpy-1.14.3-1.x86_64",
 "voci-server-server-5.4.5-1.x86_64",
 "voci-updater-2.0.0-1.x86_64",
 "voci-spark-common-3.4.3-1.x86_64",
 "voci-spark-report-3.4.3-1.x86_64",
 "voci-spark-doc-3.4.3-1.x86_64",
 "voci-pyinotify-0.9.2-1.x86_64",
 "voci-server-licensemgr-sw-5.4.3-1.x86_64",
 "voci-libshorttext-1.1-1.x86_64",
 "voci-admin-1.0.0-2.x86_64",
 "voci-pyyaml-3.10-1.x86_64",
 "voci-python-setuptools-4.0.1-1.x86_64",
 "voci-spark-am-3.4.3-1.x86_64",
 "voci-spark-server-3.4.3-1.x86_64",
 "voci-repo-internal-1.0.3-1.x86_64"
],

product (basic, full) The name of the server software product. In this case, "V-Spark".

 "product": "V-Spark"

Chapter 10. Retrieving System Information Using the V-Spark 3.5.0 API

112 Proprietary and Confidential © 2019, Voci Technologies, Inc.

10.3. Using�the�/sysinfo�API�with�cURL
If you are unfamiliar with the cURL command, see Section 1.3, “Using cURL for REST API Testing” for
a short introduction and an explanation of how cURL examples are displayed. See Section 1.3.2, “Tips for
Debugging and Managing cURL Calls” for suggestions about how to debug and manage cURL calls.

Retrieve basic system information by using a GET call to the /sysinfo API. The following command
demonstrates retrieving basic system information from a V-Spark server. The JSON that is retrieved is
written to a JSON file named Sysinfo-Test.json:

 curl -s "http://HOSTNAME/sysinfo?token=TOKEN" > Sysinfo-Test.json

Retrieve full system information including service status and the version levels of all installed packages
by using the full switch on a GET call to the /sysinfo API. The following command demonstrates
retrieving full system information from a V-Spark server. The JSON that is retrieved is written to a JSON
file named Sysinfo-Full-Test.json:

 curl -s "http://HOSTNAME/sysinfo?full&token=TOKEN" > Sysinfo-Full-Test.json

Using the V-Spark 3.5.0 API Appendix A. Sample transcribe/request API Shell Script

© 2019, Voci Technologies, Inc. Proprietary and Confidential 113

Appendix�A. Sample�transcribe/request
API�Shell�Script

This appendix shows a simple Linux Bash shell script that demonstrates using the /transcribe API to
upload a file for transcription, and using the /request to monitor the status of processing that file and
retrieve results once transcription has completed.

Note

When retrieving results using the /request API, note that the output is written to standard
output.

#!/bin/bash
#
Sample script for using the transcribe and request APIs together
#

echo "TEST: Running API tests for transcribe/result mode..."
echo ""

#
if [$# != 2] ; then
 echo "Usage: $0 host token"
 exit
fi

SERVER=$1
TOKEN=$2

Uncomment the value of FILE that you want to test with: the
"standard" version with a file extension, the "guess what kind of
file" version without a file extension, the standard audio file
without an extension, or a 7z file. If you're trying something
without an extension, you'll also have to uncomment the appropriate
"cp" line.
#
wvh 03-May-2017
#
cp ../SAMPLES/CallTEST.mp3 ../SAMPLES/CallTEST
cp ../SAMPLES/CallTEST.zip ../SAMPLES/CallTEST
cp ../SAMPLES/CallTEST.7z ../SAMPLES/CallTEST
SAMPLEFILE=../SAMPLES/CallTEST
SAMPLEFILE=../SAMPLES/CallTEST.7z
SAMPLEFILE=../SAMPLES/CallTEST.mp3
SAMPLEFILE=../SAMPLES/audio-and-metadata.zip
SAMPLEFILE=../SAMPLES/spanish.zip
SAMPLEFILE=../SAMPLES/CallTEST.zip
SAMPLEFILE=../SAMPLES/PERMANENT-FILE.ZIP
SAMPLEFILE=../SAMPLES/FOO.zip

SAMPLEFILE=../SAMPLES/audio-and-metadata.zip

SAMPLEFILE=DocTestCo-DocTesting-Test01-Fixed.zip

if [! -f $SAMPLEFILE] ; then
 echo " Specified upload ($SAMPLEFILE) does not exist!"
 exit
fi

SHORTORG=DocTestCo-DocTesting
FOLDER=Test01

DEBUG="--trace-ascii debug.out"

echo -n "Type of file to upload is: "
file $SAMPLEFILE

echo ""
echo "Submitting $SAMPLEFILE for transcription:"

CMD="curl -s -F token=$TOKEN -F \"file=@$SAMPLEFILE;type=application/zip\" -X POST
 $SERVER:3000/transcribe/$SHORTORG/$FOLDER $DEBUG"

Appendix A. Sample transcribe/request API Shell Script Using the V-Spark 3.5.0 API

114 Proprietary and Confidential © 2019, Voci Technologies, Inc.

echo "CMD is $CMD"
echo ""

echo " SUMMARY: Uploading $SAMPLEFILE for transcription at approximately $(date)"

REQUESTID=`curl -s -F token=$TOKEN \
 -F "file=@$SAMPLEFILE;type=application/zip" \
 -X POST $SERVER:3000/transcribe/$SHORTORG/$FOLDER $DEBUG`

REQUESTID=`$CMD`

echo ""

if [[${REQUESTID} =~ ^[0-9a-zA-Z]{8}-[0-9a-zA-Z]{4}-[0-9a-zA-Z]{4}-[0-9a-zA-Z]{4}-[0-9a-zA-Z]{12}]] ;
 then
 echo " SUMMARY: Upload successful - requestID is \"${REQUESTID}\"..."
else
 echo " SUMMARY: RequestID is \"${REQUESTID}\", which is not a valid request ID.."
 echo " SUMMARY: Cannot transcribe..."
 exit
fi

STATUS=""
number of second to sleep between retries of status into
SLEEP=10
TOTALWAIT=0

echo "Retrieving status for item submitted via transcribe API..."
echo " Calling curl with \"$SERVER:3000/request/$SHORTORG/status?requestid=$REQUESTID&token=
$TOKEN\""

STATUS=`curl -s "$SERVER:3000/request/$SHORTORG/status?requestid=$REQUESTID&token=$TOKEN"`

while ["x$STATUS" != "xdone"] ; do
 echo " STATUS is \"$STATUS\" - trying again in $SLEEP seconds ($TOTALWAIT so
 far)..."
 sleep $SLEEP
 TOTALWAIT=$(($TOTALWAIT + $SLEEP))
 STATUS=`curl -s "$SERVER:3000/request/$SHORTORG/status?requestid=$REQUESTID&token=
$TOKEN"`
((RETRY+=1))
if ["x$RETRY" = "x$MAXTRIES"] ; then
echo " Quitting due to limit of $MAXTRIES retries..."
exit 1
fi
done

echo $REQUESTID > .REQUESTID

echo " SUMMARY: Transcription completed successfully at $(date)"

Using the V-Spark 3.5.0 API Appendix B. Possible Error Codes from the V-Spark API

© 2019, Voci Technologies, Inc. Proprietary and Confidential 115

Appendix�B. Possible�Error�Codes�from
the�V-Spark�API

B.1. Possible�Error�Codes�from�the�/transcribe
API

The /transcribe API returns HTTP error codes when called with incorrect or invalid parameters:

400 The /request API returns a 400 in cases when the authentication token that is required to access
V-Spark is missing or invalid, or when S3 authentication information is invalid. The error text
differs based on the cause of the error, and helps identify the cause of the problem:

Bad request

Content is being submitted via the S3 protocol and the S3 key information that is required to
access a given bucket was invalid or was not provided.

Missing "token" field

No authorization token was provided in your call to the /request API.

Invalid token was provided

The authorization token that was used in your call to the /request API is not correct.
Locating your authorization token is shown in Figure 1.1, “Location of a Company
Authorization Token”.

402 The /transcribe API returns a 402 in response to attempts to exceed the usage models that are
associated with the V-Spark instance that you are running on:

Usage Limit is reached

You have reached the size limit of the amount of audio data that you are licensed to process.
To increase that limit, contact your Voci sales representative or send email to Voci product
support (<support@vocitec.com>).

404 The /transcribe API returns a 404 in response to multiple errors. The error text differs based
on the cause of the error, and helps identify the cause of the problem:

Company not found

V-Spark can look up the name of the company that you are using based on the value that
you passed for the ORG_SHORT parameter. The value that you specified for this parameter
is incorrect.

Folder folder-name not found

The folder that was passed as a parameter does not exist or cannot be accessed.

Appendix B. Possible Error Codes from the V-Spark API Using the V-Spark 3.5.0 API

116 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Organization organization-name not found

The organization whose short name was passed as a parameter does not exist or cannot be
accessed.

406 The /transcribe API returns a 406 in response to errors where the data that it is POSTing is
not acceptable to its client, the V-Spark server. The error text differs based on the cause of the error,
and helps identify the cause of the problem:

File size is too large. File should be smaller than LIMIT

The size of the uploaded file is larger than the displayed LIMIT. This limit is configurable
via the transcribe_api_upload_limit configuration variable, so the text of this error
may vary.

500 The /transcribe API returns a 500 in response to serious internal errors that reflect a hardware,
software, or configuration error on the system where V-Spark is running. Contact Voci product
support (<support@vocitec.com>) for assistance in identifying and resolving the problem.

B.2. Possible�Error�Codes�from�the�/request�API
The /request API returns HTTP error codes when called with incorrect or invalid parameters:

400 The /request API usually returns a 400 in cases when the authentication token that is required
to access V-Spark is missing or invalid. The error text differs based on the cause of the error, and
helps identify the cause of the problem:

Auth token doesn't match

The authorization token that was used in your call to the /request API is not correct.
Locating your authorization token is shown in Figure 1.1, “Location of a Company
Authorization Token”.

Request not finished

The results that you requested are not yet available. Always check the status of the audio
processing for a "done" response before requesting the JSON transcript, as shown in
Section 5.3, “Examples of calling the /request API”.

404 The/request API returns a 404 in response to multiple errors. The error text differs based on the
cause of the error, and helps identify the cause of the problem:

Company not found

V-Spark can look up the name of the company that you are using based on the value that you
passed for the ORG_SHORT parameter. This error means that the value that you specified for
this parameter was incorrect.

No file types were specified

The default JSON output format was disabled in your call to the /request API, but you did
not enable another format (mp3 or txt)

Using the V-Spark 3.5.0 API Appendix B. Possible Error Codes from the V-Spark API

© 2019, Voci Technologies, Inc. Proprietary and Confidential 117

Organization organization-name not found

The organization whose short name was passed as a parameter does not exist or cannot be
accessed

RequestFile not found

This message indicates a problem communicating with the database that is used by V-Spark.
Retrying the operation should succeed. If you continue to see this message, contact Voci
product support (<support@vocitec.com>).

RequestId not found

The request ID that was passed as a parameter does not exist. Check for typographical errors
if testing the /request API call from the command-line, or check your application code to
ensure that you are storing and using a valid request ID.

B.3. Possible�Error�Codes�from�the�/config/
folders�API

The /config/folders API returns HTTP error codes when called with incorrect or invalid parameters:

400 The /config/folders API returns a 400 in cases when the configuration being set via the
update is invalid. The error text differs based on the cause of the error, and helps identify the cause
of the problem:

Folder [folder name] is disabled due to company-level policies

You are attempting to resume processing of a paused folder, but that folder cannot be resumed
because it has been disabled. Usually, this is because the folder was paused due to company
limit hours being met.

B.4. General�Error�Codes�from�the�V-Spark�APIs
V-Spark APIs other than the /request and /transcribe APIs return HTTP error messages when
called with incorrect, invalid, or missing parameters:

Can not delete multiple items

A request to delete multiple objects was made to the /config API, but the multi=true parameter
was not specified

Can not delete non-empty object

A request to delete an object that contains other objects was made to the /config API, but the
tree=true parameter was not specified

Error parsing search results

The ElasticSearch server returned results based on your call to the /search API, but those results
could not be converted into the output format used by the V-Spark API for this call

Appendix B. Possible Error Codes from the V-Spark API Using the V-Spark 3.5.0 API

118 Proprietary and Confidential © 2019, Voci Technologies, Inc.

Invalid JSON

Any V-Spark API that accepts JSON content does a check to determine the validity of any JSON
content that is POSTed, and returns this error if the JSON is not valid

Invalid output option

The /search was called with an output option other than count, details, summary or zip

Invalid template option: template-name

A request to upgrade an application was made, but the specified application is based on a template
that no longer exists in V-Spark. You will have to delete and recreate the application.

Search Error

The command syntax used in a /search API call is incorrect, or the ElasticSearch server is not
available.

	Using the V-Spark 3.5.0 API
	Table of Contents
	Chapter 1. V-Spark API Overview
	1.1. Overview of the V-Spark Hierarchy
	1.2. V-Spark API Permission Requirements
	1.3. Using cURL for REST API Testing
	1.3.1. Obtaining and Using the cURL program
	1.3.2. Tips for Debugging and Managing cURL Calls

	1.4. Using Python with REST APIs

	Chapter 2. Pre-Requisites
	Chapter 3. Retrieving and Updating V-Spark Information
	3.1. Retrieving and Updating V-Spark Installation Configuration
	3.1.1. Reference for the /config API
	3.1.1.1. Refining by Companies, Organizations, Folders, and Apps

	3.1.2. Sample JSON Output from the /config API
	3.1.2.1. Sample /config JSON Output for a Company
	3.1.2.2. Sample /config/orgs JSON Output for an Organization
	3.1.2.3. Sample /config/folders JSON Output for a Folder
	3.1.2.4. Sample /config/apps JSON Output for an Application
	3.1.2.5. Sample /config/users JSON Output for a User
	3.1.2.6. Sample /config/system/readonly JSON Output for System Status

	3.2. Permissions and Capabilities in the /config/users API
	3.2.1. V-Spark Permissions and the /config/users API
	3.2.2. Differences between GET and POST JSON for the /config/users API

	3.3. Using the /config API with cURL
	3.3.1. GET'ing Information Using cURL and the /config API
	3.3.2. POST'ing Information Using cURL and the /config API
	3.3.3. DELETE'ing Information Using cURL and the /config API
	3.3.3.1. Getting DELETE Status Information

	3.4. Using the /config API with Python
	3.4.1. GET'ing Information Using Python and the /config API
	3.4.2. Integrating Multiple GET Results Using Python
	3.4.3. POST'ing Information Using Python and the /config API
	3.4.4. DELETE'ing Information Using Python and the /config API

	3.5. Listing Configuration Information
	3.5.1. Reference for the /list API
	3.5.1.1. Sample JSON Output from the /list API
	3.5.1.1.1. Sample /list JSON Output for Companies
	3.5.1.1.2. Sample /list/orgs JSON Output for a Company
	3.5.1.1.3. Sample /list/folders JSON Output for a Company
	3.5.1.1.4. Sample /list/apps JSON Output
	3.5.1.1.5. Sample /list/users JSON Output for an Installation

	3.5.1.2. Using the /list API with cURL
	3.5.1.3. Using the /list API with Python

	Chapter 4. Submitting audio and metadata for processing
	4.1. Reference for the /transcribe API
	4.1.1. Examples of calling the /transcribe API

	4.2. Using the /transcribe API with AWS S3

	Chapter 5. Receiving transcripts and status information
	5.1. Using Callbacks in V-Spark
	5.1.1. Configuring Callbacks in V-Spark
	5.1.2. Example Callback Server
	5.1.2.1. Setting up a Sample Callback Server
	5.1.2.2. Submitting a Sample File for Text Transcription
	5.1.2.3. Receiving Transcription Results
	5.1.2.4. Troubleshooting a Callback Server

	5.2. Reference for the /request API
	5.3. Examples of calling the /request API

	Chapter 6. Retrieving Folder Status Information
	6.1. Reference for the /status API
	6.2. Sample JSON and CSV Output from the /status API
	6.2.1. Sample /status JSON and CSV Output for a Company
	6.2.2. Sample /status JSON and CSV Output for an Organization
	6.2.3. Sample /status JSON and CSV Output for a Folder

	6.3. Using the /status API with cURL
	6.4. Using the /status API with Python

	Chapter 7. Searching V-Spark Data
	7.1. Reference for the /search API
	7.1.1. Output Type Options
	7.1.2. Search Term Options
	7.1.3. Output Format Options
	7.1.4. Output Field Options
	7.1.5. Output Sorting Options

	7.2. Sample JSON Output for a query from the /search API
	7.3. Using the /search API with cURL
	7.4. Using the /search API with Python
	7.4.1. Using the /search API via GET with Python
	7.4.2. Using the /search API via POST with Python

	Chapter 8. Retrieving Folder and Application Statistics Information
	8.1. Retrieving Folder Statistics
	8.1.1. Reference for the /stats API
	8.1.2. Sample JSON from the /stats API
	8.1.3. Using the /stats API with cURL
	8.1.4. Using the /stats API with Python

	8.2. Retrieving Agent Application Statistics and Category Scores
	8.2.1. Reference for the /appstats API
	8.2.2. Sample JSON from the /appstats API
	8.2.3. Using the /appstats API with cURL
	8.2.4. Using the /appstats API with Python

	Chapter 9. Configuring V-Spark Applications
	9.1. Reference for the /appedit API
	9.2. Using the /appedit API with cURL
	9.2.1. Creating and Populating an Application Using cURL

	9.3. Using the /appedit API with Python

	Chapter 10. Retrieving System Information
	10.1. Reference for the /sysinfo API
	10.2. Sample JSON from the /sysinfo API
	10.3. Using the /sysinfo API with cURL

	Appendix A. Sample transcribe/request API Shell Script
	Appendix B. Possible Error Codes from the V-Spark API
	B.1. Possible Error Codes from the /transcribe API
	B.2. Possible Error Codes from the /request API
	B.3. Possible Error Codes from the /config/folders API
	B.4. General Error Codes from the V-Spark APIs

